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ABSTRACT
Regression models are of fundamental importance in explicitly ex-

plaining the response variable in terms of covariates. However,

point predictions of these models limit them from many real world

applications. Heteroscedasticity is common in most real-world sce-

narios and is hard to model due to its randomness. The Gaussian

process generally captures epistemic (model) uncertainty but fails

to capture heteroscedastic aleatoric uncertainty. The framework of

HetGP inherently captures both epistemic and aleatoric by placing

independent GP’s priors on both mean function and error term.

We propose the posthoc HetGP on the residuals of the trained de-

terministic neural network to obtain both epistemic and aleatoric

uncertainty. The advantage of posthoc HetGP on residuals is that it

can be extended to any type of model, since the model is assumed

to be black-box that gives point predictions. We demonstrate our

approach through simulation studies and UCI regression datasets.

The code is available at https://visdomlab.github.io/HetGP/.
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1 INTRODUCTION
Neural networks (NN) finds application in the broad range of the

real-world regression and classification problems mapping high

dimensional input array of data to the requisite output. NN’s maxi-

mizes the likelihood parameter which does not give any information

about the confidence of the prediction. There is an underlying as-

sumption about the confidence of these mappings, which does not

always hold true [22]. NN prediction fails due to biased dataset,

model inference errors, domain discrepancy between training and

test datasets, etc. Thus, uncertainty quantification (UQ) and predic-

tion are crucial to real-world decision making.

There has been rich literature on quantifying predictive uncer-

tainty in NN ([15], [6], [28], [34]), which can be further decomposed

to 𝑎𝑙𝑒𝑎𝑡𝑜𝑟𝑖𝑐 and 𝑒𝑝𝑖𝑠𝑡𝑒𝑚𝑖𝑐 uncertainty. Aleatoric, or data uncer-

tainty, reflects intrinsic stochasticity in data, while epistemic, or

model uncertainty, arises from limitations in model itself. Epistemic

can be reduced by collecting more data and training a more complex

model [1]. Aleatoric is further classified as homoscedastic, which

is constant for all inputs and heteroscedastic, which varies with

respect to inputs.

Bayesian NN, Gaussian Process (GP), and deterministic UQmeth-

ods exist. Bayesian methods are computationally intensive and

require network architecture changes, making them difficult to

implement. Moreover, sampling requirement in Bayesian methods

hinders real-time ability on edge devices. Therefore, to overcome

the disadvantages of Bayesian modeling, UQ progressed towards

nonparametric and deterministic networks ([2], [34], [21]). Evi-

dential Deep Learning (EDL) is a popular deterministic approach

that integrates deep learning and Dempster-Shafer theory ([29])

to quantify predictive uncertainty, resulting in impressive achieve-

ments and closed-form expressions of both epistemic and aleatoric

uncertainty [28].

On the other hand, GP’s ([25]) are highly flexible Bayesian non-

parametric models that inherently quantify uncertainty. The stan-

dard GP quantifies the epistemic uncertainty by incorporating the

distributions of all functions satisfying constraints of the covariance

function and data. However, exact GP inference suffers from𝑂 (𝑛3)
complexity with number of data points due to the inversion of co-

variance matrix. There has been significant research on combining

deep NNs with GP’s ([3], [33], [11], [31]) leveraging expressivity of

deep NNs and UQ capabilities of GP’s. In particular, ([13]) proposed

using a NN to model the mean function of a GP. [7] introduced

a different approach that combines NNs and GPs. They proposed

https://visdomlab.github.io/HetGP/
https://doi.org/10.1145/3627673.3679983
https://doi.org/10.1145/3627673.3679983
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defining conditional distributions over functions given data with a

NN parameterising data dependence. However, the above GP-NN

combinations change network architecture and homoscedasticity

assumption significantly.

To overcome the disadvantage of architectural changes and ho-

moscedasticity assumption of the standard GP, we propose to use

Heteroscedastic Gaussian Process (HetGP) over the residuals of the

trained network to quantify both aleotoric and epistemic uncer-

tainty as given in Fig (1). Input noise dependent GP regression has

independent GP prior on the noise term [8]. To overcome the com-

putational complexity and the intractable posterior for GPs many

approximate inference methods are proposed including MCMC

([8]), Variational Bayes ([18]), Laplace Approximation ([35]), Ex-

pectation Propogation ([10]), here we adopt the variational sparse

approximation of GP through inducing points ([9]), which speeds

up the computation by choosing𝑚 inducing points over the covari-

ate space. The proposed framework works by taking the residuals

of a pretrained network and fitting a HetGP on the residuals during

the training time. During the testing time, the mean predictions are

given by NN and predictive uncertainty by HetGP simultaneously.

Section 2 reviews previous research and our contributions. Sections

3 and 4 describe the methodology of HetGP on residuals using

Sparse Variational GP [9]. Section 5 analyzes HetGP on residuals,

with results in Section 6. The article concludes in Section 7.

Figure 1: Training and Prediction phases of the proposed method

2 RELATEDWORK
Post-hoc UQ in NN’s is well studied in literature, ([16]) is the

straightforward approach to turn a NN to GP through Laplace

approximation, ([32]) used Metropolis Hastings MCMC sampling

for uncertainty estimation of trained deterministic networks and

is highly computationally complex. Recently, ([20]) have done a

thorough analysis on the dropout injection method, which uses

dropout layers only during the inference time to obtain epistemic

uncertainty prediction. But post-hoc uncertainty through residuals

is relatively less explored in the literature, ([24]) is the first one

to use a GP with a modified kernel that includes both input and

output of the NN to model the residuals of a trained NN to obtain

predictive uncertainties. However, their work does not explicitly

deal with heteroscedastic data, and using an additive kernel in their

framework might account for heteroscedasticity.

Traditional methods ([4]) dealt heteroscedasticity by first fitting

the mean function and then fitting the standard deviation from log-

residuals. However, the resulting objective function is only convex

with respect to a single parameter at a time, not jointly convex in

both. To address this for GP’s, ([19]) proposed the objective function

in terms of natural parametrization.

The de facto standard of obtaining aleatoric uncertainty with

NN’s involves assuming a specific distribution for the regression

targets ([23], [17], [15]). A NN then predicts the parameters of this

distribution, typically the input-dependent mean and variance for

a heteroscedastic Gaussian distribution. These network parameters

are subsequently learned through maximum likelihood estimation

(MLE). Several approaches are proposed, including using a separate

NN architecture to model the variance ([5]). However, ([27]) pointed

out on the performance of these models on their mean function,

which can lead to sub par mean function estimates.

The most recent approaches to account for heteroscedasticity in NN

include ([30], [12]), where ([12]) inspired by ([19]) adopts the natural

parametrization of the Gaussian distribution to obtain modified

loss function for the aleatoric uncertainty, Laplace approximation

was employed to get the epistemic uncertainty.

Contributions - Our main contributions include enhancing

a deterministic-trained NN to account for epistemic and aleatoric

uncertainty through residuals without making any modifications

to the network architecture or loss functions. While our main focus

is on capturing heteroscedasticity, this framework also reduces the

error in the NN prediction and make the model well calibrated.

3 PROBLEM STATEMENT
If we have a training dataset 𝐷 = {𝑥𝑖 , 𝑦𝑖 }𝑛𝑖=1

and NN with pre-

trained weights, employed for point prediction (𝜇𝑖 ) given 𝑥𝑖 . Our
objective is to tackle the issue of heteroscedastic aleatoric uncer-

tainty in NN predictions and enhance the accuracy of the point

predictions made by the NN.

4 FRAMEWORK OVERVIEW
The problem is addressed through the residuals of the NN predic-

tions (𝜇) and the observed outcomes 𝑦 using a HetGP. The HetGP

configuration typically employs two GP’s, one for representing the

latent function and another for estimating the noise that varies

with the input. The fusion of the two GP’s will produce a joint pos-

terior distribution that encompasses both the latent function and

the noise dependent on the input. This distribution is non-Gaussian

and cannot be easily solved analytically.

The framework of HetGP assuming the response variable gener-

ated by normal distribution is given by,

𝑦𝑖 = 𝑓 (𝑥𝑖 ) + 𝜖𝑖 , 𝜖𝑖 ∼ N(0, 𝜎2 (𝑥𝑖 )) (1)

Here, the functions 𝑓 (𝑥) and log(𝜎2 (𝑥)) are the independent GP’s.
We get a standard GP when the noise variance term is independent

of data. In general heteroscedasticity arises from the non-constant

variance of the error terms. Here, we have variance of error as

a function of data. During the training stage, the discrepancies

(residuals (𝑟𝑖 )) are computed as the differences between observed

outcomes (𝑦𝑖 ) and predictions (𝜇𝑖 ) generated by the NN on the

training set calculated as 𝑟𝑖 = 𝑦𝑖 − 𝜇𝑖 . Now, we have the residuals
𝑟𝑖 and can be further broken down into,

𝑟𝑖 = 𝑦𝑖 − 𝑓𝑖 + 𝑓𝑖 − 𝜇𝑖 = 𝜖𝑖 + (𝑓𝑖 − 𝜇𝑖 ) (2)

Where, 𝜖𝑖 is the observation error or noise and the (𝑓𝑖 − 𝜇𝑖 ) is the
modelling error. The observation error is random, and themodelling

error is non-random. This makes our residuals 𝑟𝑖 a random variable

with gaussian distribution with mean 𝜇𝑟𝑖 = (𝑓𝑖 − 𝜇𝑖 ) and variance

(𝜎2

𝑟𝑖
= 𝑔𝑖 = var(𝜖 (𝑥𝑖 ))

𝑟𝑖 ∼ N(𝜇𝑟𝑖 , 𝜎2

𝑟𝑖
) (3)

Since, we assume heteroscedasticity in our data the variance of

the residuals is a function of data. To account for this, we place a
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heteroscedastic GP prior over the residuals to independently model

both the mean function and the log-noise. Let 𝜇𝑟𝑖 = 𝑚(𝑥𝑖 ) is the
mean function of the residuals and var(𝜖 (𝑥𝑖 )) = 𝜎2

𝑟𝑖
. So, we can

place independent GP priors over 𝑚(𝑥𝑖 ) and 𝜎2

𝑟𝑖
and to ensure

positive variance, we use log link function for the second GP.

We have 𝜇𝑟𝑖 ∼ 𝐺𝑃 (0, 𝐾1) and log(𝜎2

𝑟𝑖
) ∼ 𝐺𝑃 (0, 𝐾2), where 𝐾1

and 𝐾2 are the kernel functions of the respective independent GPs.

Assume that 𝑧𝑖 = log(𝜎2

𝑟𝑖
) . and thus the HetGP uses two GPs: the

𝑧-process, which learns the input-dependent noise level, and the 𝜇-

process, which recovers the unknownmean function, which implies

that 𝑟𝑖 ∼ N(𝜇𝑟𝑖 , 𝑒𝑧𝑖 ). Over the test output, the resulting posterior
predictive is given by,

𝑝 (𝑟∗𝑖 |𝑥
∗, 𝜃𝜇 , 𝜃𝑧 , 𝐷) =

∫
𝑝 (𝑟∗𝑖 |𝑥

∗, 𝜃𝜇 , 𝑧, 𝑧∗, 𝐷)𝑝 (𝑧, 𝑧∗ |𝑥∗, 𝜃𝑧 , 𝐷)𝑑𝑧𝑑𝑧∗

Where 𝑧 = (𝑧1, . . . , 𝑧𝑛)𝑇 are the log noise variances at training

inputs 𝑋 and 𝑧∗ is the log noise variance at the test input 𝑥∗. Here,
the full posterior 𝑝 (𝑧, 𝑧∗ |𝑥∗, 𝜃𝑧 , 𝐷) of the noises is analytically in-

tractable and we accomodate the variational sparse approximation

to obtain the approximate full posterior. Since, we have two inde-

pendent GP’s for mean and noise, with separate link functions, the

framework is similar to chained GP ([26]). For simplicity, let us

assume 𝜇𝑖 = 𝑓𝑖 , 𝑧𝑖 = 𝑔𝑖 . Then the variational approximation of the

posterior is given by,

𝑝 (𝑓 , 𝑔,𝑢𝑓 , 𝑢𝑔 |𝑟 ) ≈ 𝑝 (𝑓 |𝑢𝑓 )𝑝 (𝑔|𝑢𝑔)𝑞(𝑢𝑓 )𝑞(𝑢𝑔) (4)

Where, 𝑢𝑓 = 𝑓 (𝑡), 𝑢𝑔 = 𝑔(𝑡) are the inducing points at locations

𝑇 = {𝑡𝑖 }𝑚𝑖=1
. We can write the lower bound for the log-marginal

from the Jensen’s inequality, which is given by,

log𝑝 (𝑟 ) ≥
∫

𝑞 (𝑓 )𝑞 (𝑔) log𝑝 (𝑟 | 𝑓 , 𝑔)𝑑𝑓 𝑑𝑔−KL(𝑞 (𝑢𝑓 ) | |𝑝 (𝑢𝑓 ) ) −KL(𝑞 (𝑢𝑔 ) | |𝑝 (𝑢𝑔 ) ) (5)

Where the first term is the variational expectation, second and

third terms are the prior KL (Kullback–Leibler) terms which acts

as a regularizers for the objective function. Here maximizing this

log-marginal is equivalent to minimizing the Kullback–Leibler-

divergence between true posterior and the approximate posterior.

Now, for a new independent test points, the predictive distribu-

tion for each data pair is given by,

𝑝 (𝑟∗𝑖 |𝑟𝑖 , 𝑥𝑖 ) =
∫

𝑝 (𝑟∗𝑖 |𝑓
∗
𝑖 , 𝑔

∗
𝑖 )𝑞(𝑓

∗
𝑖 )𝑞(𝑔

∗
𝑖 )𝑑 𝑓

∗
𝑖 𝑑𝑔

∗
𝑖 (6)

where 𝑞(𝑓 ∗) and 𝑞(𝑔∗) are the variational distributions of the re-
spective GP’s posteriors.

So, the distribution of the residuals at the new test point 𝑥∗ is
given by 𝑟∗ |𝑋,𝑦, 𝑟, 𝑥∗ ∼ N(¯𝑟∗, var(𝑟∗)). We now notice that the NN

predictions can be calibrated through the mean prediction of the

residuals, so that the final calibrated prediction with uncertainty

information is given by,

𝑦′∗ ∼ N(𝑦∗ + ¯𝑟∗, var(𝑟∗)) (7)

Here, (var(𝑟∗)) is the variance of the error term and accounts for

the heteroscedasticity of the new input points. It is also evident that

the NN is deterministic implying that var(𝑦∗) = 0. This gives us

that the variance of the final prediction which account for epistemic

uncertainty is only given by the epistemic uncertainty of HetGP.

However, without changing the architecture or training set, this

method additionally provides the means to calibrate predictions of

NN alongside meaningful uncertainty information.

5 ANALYSIS OF HETGP ON RESIDUALS
This section shows theoretically how applying a HetGP to trained

NN residuals can capture heteroscedasticity and provide uncer-

tainty information. This method reduces prediction errors, improv-

ing NN calibration. Due to their expressive power, NNs are good at

interpreting complex data patterns, while GPs handle uncertainty

well. Removing variable noise and simplifying the complex struc-

ture makes fitting a HetGP to the remaining NN errors easier. This

approach takes advantage of NN’s predictive capabilities while also

providing useful uncertainty estimates.

As discussed in ([27]) the main reasons for under performance of

a NN model when using the common NLL loss for heteroscedastic

aleatoric noise is due to initial badly-fit regions receiving increas-

ingly less weightage in the loss which results in premature con-

vergence. Here, we try to avoid this problem by training the NN

with homoscedastic assumption and capturing heteroscedasticity

through residuals. For example, let us consider the case where our

data generating process is defined by,

𝑦𝑖 = 𝑓 (𝑥𝑖 ) + 𝜖 (𝑥𝑖 ) = 𝑓1 (𝑥𝑖 ) + 𝑓2 (𝑥𝑖 ) + 𝜖 (𝑥𝑖 )

Here, 𝑓 (𝑥𝑖 ) represents the true mean function, while 𝜖 (𝑥𝑖 ) repre-
sents the associated heteroscedasticity. The true function 𝑓 can

be decomposed into two parts: 𝑓1, which is well captured by the

mean function of HetGP, and 𝑓2, which is considered as noise. This

is particularly evident in situations involving complex mean and

noise functions, such as image regression. For example, a pretrained

NN that has already learned a certain level of complexity can be

utilised to its advantage. The mean function of HetGP may capture

this complexity, but it reduces generalisation. The unsatisfactory

result may have been due to difficult kernel selection and high-

dimensional data. By accurately estimating complexity variance

as noise, the HetGP optimiser avoids mismodelling complexity.

Residual components are determined by,

𝑦𝑖 − 𝑓𝑁𝑁 (𝑥𝑖 ) = 𝑟 (𝑥𝑖 ) + 𝜖 (𝑥𝑖 ) = 𝑟 𝑓1 (𝑥𝑖 ) + 𝑟 𝑓2 (𝑥𝑖 ) + 𝜖 (𝑥𝑖 )

Where 𝑓𝑁𝑁 (𝑥𝑖 ) is the trained NN and in this case, it is easier for

the mean function of HetGP to learn the residuals than the true

function (𝑓 ) itself and the remaining noisy part of the residuals is

easily modelled by noise function of HetGP.

From Theorem 5.1 in ([24]), we can see that fitting HetGP on

residuals is useful only when 𝐸 [𝑓 2

2
(𝑥)] − 𝐸 [𝑟2

𝑓1
(𝑥)] > 0, which

says that fitting on the residuals is helpful when NN has already

captured some complex structure. This statement and theorem is

clearly justified through the simulation study (3, 4). This emphasises

the need to train NNs without overfitting.

6 NUMERICAL EXAMPLES
6.1 Simulation study
We train a HetGP NN, where the network outputs both mean and

standard deviation as a function of data. We then compute the

residuals corresponding the true response. Now, this looks like

the case of a heteroscedastic regression, where the variance of

the error term is a function of data and the residuals (𝑟𝑖 ) will be a

function of data. Fitting a HetGP on residuals is equivalent to fitting

a heteroscedastic regression on the original formulation. First, let

us consider a data generating process with simple mean function
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autompg concrete energy gas machine parkinsons protein wine(r) yatch

RMSE (↓)
NN 0.067 ± 0.003 0.056 ± 0.003 0.014 ± 0.003 0.037 ± 0.026 0.089 ± 0.004 0.032 ± 0.015 0.142 ± 0.001 0.075 ± 0.004 0.020 ± 0.009

GP (r) 0.066 ± 0.001 0.053 ± 0.002 0.010 ± 0.001 0.019 ± 0.006 0.089 ± 0.003 0.028 ± 0.011 0.141 ± 0.001 0.072 ± 0.003 0.015 ± 0.003

EDL 0.070 ± 0.003 0.064 ± 0.009 0.025 ± 0.011 0.027 ± 0.008 0.089 ± 0.004 0.021 ± 0.002 0.148 ± 0.001 0.069 ± 0.003 0.044 ± 0.018

HetGP (r) 0.065 ± 0.001 0.053 ± 0.002 0.009 ± 7e-4 0.019 ± 0.005 0.088 ± 0.003 0.027 ± 0.013 0.140 ± 0.001 0.072 ± 0.002 0.016 ± 0.005

ECE (↓)
NN 0.022 ± 0.008 0.017 ± 0.006 0.007 ± 0.003 0.023 ± 0.019 0.056 ± 0.002 0.007 ± 0.004 0.019 ± 0.004 0.022 ± 0.005 0.009 ± 0.006

GP (r) 0.017 ± 0.002 0.013 ± 0.001 0.003 ± 1e-4 0.004 ± 0.001 0.055 ± 0.002 0.004 ± 0.002 0.014 ± 0.001 0.020 ± 0.002 0.004 ± 0.001

EDL 0.025 ± 0.006 0.027 ± 0.013 0.017 ± 0.011 0.014 ± 0.010 0.058 ± 0.003 0.004 ± 0.001 0.022 ± 0.003 0.026 ± 0.008 0.026 ± 0.018

HetGP (r) 0.016 ± 0.001 0.013 ± 0.001 0.003 ± 1e-4 0.005 ± 0.003 0.056 ± 0.002 0.004 ± 0.002 0.014 ± 0.001 0.019 ± 0.003 0.004 ± 0.002

NLPD (↓)
GP (r) 1.294 ± 0.028 1.429 ± 0.051 2.853 ± 0.288 1.815 ± 0.548 0.931 ± 0.074 2.013 ± 0.456 0.516 ± 0.011 0.824 ± 0.201 2.232 ± 0.821

EDL 1.242 ± 0.056 1.201 ± 0.219 2.033 ± 0.490 1.931 ± 0.798 0.362 ± 0.284 2.583 ± 0.111 0.428 ± 0.044 1.162 ± 0.147 1.545 ± 0.427

HetGP (r) 0.984 ± 0.013 0.876 ± 0.031 1.098 ± 0.027 0.890 ± 0.051 0.866 ± 0.013 1.165 ± 0.272 0.242 ± 0.009 1.138 ± 0.036 0.932 ± 0.176

Table 1: Performance metrics (RMSE, ECE, NLPD) for different models across various UCI regression datasets.

and noise 𝑦 = 0.5𝑥2 +0.25𝑥3 +N
(
0, (2𝑥 sin(𝑥))2

)
. Figure (2) shows

the comparison of aleatoric of NN’s with aleatoric uncertainty

obtained from fitting HetGP and evidential model. The portion of

95% coverage is obtained as 95.3% for NN that outputs mean and

standard deviation, 95.7% for HetGP on residuals, 97% for evidential

regression. This plot shows that even though the mean function is

almost linear and we can capture the heteroscedasticity as function

of data through residuals. It is clear that the evidential model covers

more number of points than it need to in the 95% confidence plot.

The idea is to take any trained NN and use HetGP to calculate

predictive uncertainty with residuals as the response variable. The

plot shows smooth uncertainty bounds from squared exponential

kernel versus sharp relu curves.

Figure 2: Comparison of Aleatoric uncertainty in HetGP on residu-
als, NN and Evidential model

Now,we consider an examplewithmore complexmean and noise

by generating 1000 samples from 𝑦 = sinc(𝑥) + 𝜖 · 𝑆𝑋 , where 𝑥 ∈
(−10, 10), 𝜖 ∼ N(0, 1) and 𝑆𝑥 = 0.05+

(
1 + 1

1+𝑒−0.2𝑥

)
(1 + sin(2𝑥))·

0.2. The plots (Figure 2, Figure 3) clearly shows the capability of the

proposed method in obtaining heteroscedastic aleatoric uncertainty

even on highly noisy data. From the plot of residuals (Fig: 2) we can

clearly see that the mean function is almost constant and the HetGP

has to focus only on capturing the heteroscedasticity. If suppose,

we try to fit the original data directly with HetGP, then either the

resulting mean or noise function is underfit. So, NN acts a prepro-

cessing method to capture the complexities in the mean function

and leaving out the noise to HetGP to model through residuals.

6.2 UCI regression data
Here, we consider the publicly available UCI regression datasets,

where all the 9 datasets are real world regression problems ([14]) and

Figure 3: Comparison of Aleatoric and Epistemic uncertainty of
different models

Figure 4: Residuals plot with mean and noise functions ap-
proximated by HetGP and histogram of residuals

each dataset is normalized and split into train and test where the NN

model is trained on train data and the HetGP is trained on residuals

with NN fitted on train data. Then, the test data is used to predict

on both NN and HetGP. Evidential model is directly trained on train

and tested on test data.We also considered the homoscedastic GP on

residuals for comparison with the performance of HetGP. For all the

datasets, 50 inducing points are chosen with squared exponential

kernels. NaturalGradient and Adam optimise hyperparameters with

0.1 and 0.01 step sizes.

Root Mean Square Error (RMSE) is used here to measure the

error between model predictions and the true outcomes; calibra-

tion of the model with Expected Calibration Error (ECE); quality

of the uncertainty estimates by Negative Log Predictive Density

(NLPD), all the experiments are run for 10 times by shuffling the

dataset before train-test split each time and the mean and standard

deviation of the metrics are reported. While the primary goal of

HetGP on residuals is to improve pretrained NN rather than build a

new model for prediction from start, statistical tests show that this

method outperforms NN on all datasets, with 6 out of 9 datasets

showing significant improvements over other approaches. Table (1)

displays RMSE, ECE, and NLPD metrics for all models, with GP (r)

and HetGP(r) fitting residuals.

7 DISCUSSION AND CONCLUSION
Here, we presented a novel approach on obtaining heteroscedastic

aleatoric and epistemic uncertainty estimates from a trained deter-

ministic NN, our proposed method need no modifications to the

network architecture and works post-hoc on residuals to capture

the inherent heteroscedasticity in the data. Our approach involves

variational sparse GPs and can easily scale to large datasets. We

have also shown that the proposed method is on par with the state

of art deterministic uncertainty networks. As a part of future work,

we aim to extend this framework to classification tasks and assess

the reliability of epistemic uncertainty.
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