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Multi-Attribute Bias Mitigation via Representation

Learning

In this supplementary material, we provide: (i) extended dataset documentation with illustrative figures
for FB-CMNIST, CelebA, and our curated COCO subset (Fig. 1), clarifying how multi-attribute biases are
injected and evaluated; (ii) exhaustive experimental evidence, comprising ablation studies, alternative attention-
weighting comparisons, fine-tuning variants, and latent-space diagnostics (Tables 1 and 5–6); (iii) a critical
appraisal of bias metrics, contrasting existing MABA variants with our proposed Scaled Bias Amplification
measure and analyzing train–test shift (Table 2 and 9, Fig. 10); and (iv) the formal foundations of the method,
featuring gradient-based propositions that explain how the adaptive fusion in Stage 1 disentangles bias, together
with a statistical proof of the SBA weighting scheme. Collectively, these components furnish all empirical,
dataset, and theoretical details required for reviewers to reproduce, interpret, and rigorously scrutinize our
results.

1 Dataset Details

1.1 CMNIST

FB-CMNIST is constructed following the approach given by Bahng et al. [1] from the Colored MNIST dataset
designed to study spurious correlations in multi-attribute settings. In FB-CMNIST, both the foreground and
background colors are correlated with the digit labels, serving as spurious features that can influence model
predictions. To systematically control the bias, the training data includes combinations of correlation strengths:
(0.9, 0.9), (0.95, 0.95), and (0.99, 0.99), where each value denotes the correlation of the foreground and back-
ground colors with the digit label. These settings create strong spurious associations, encouraging models to
rely on color information rather than the actual digit shapes. For evaluation, an unbiased test set is provided
where the correlations are reduced to (0.1, 0.1), offering a means to assess how well models generalize when the
spurious cues are minimal or absent. Figure 1a shows sample images from the unbiased test set of FB-CMNIST,
where weak color-label correlations (0.1, 0.1) test the model’s ability to ignore spurious cues.

1.2 CelebA

We used the CelebA dataset to investigate the impact of spurious correlations in gender classification tasks. In
this version, the target label is gender, while two biases lipstick and heavy makeup, are strongly correlated with
the gender label. These biases are reflected in two attributes, Wearing Lipstick and Heavy Makeup which are
often associated with female individuals.

• The co-occurrence between the label ”Male” and the attribute ”Wearing Lipstick” shows that 80.6% of
females wear lipstick, while only 19.4% of males do.

• Similarly, for ”Heavy Makeup,” 66.3% of females wear heavy makeup, while 33.7% of males do.

• The combined biases of both lipstick and makeup show even stronger correlations, with 64.8% of females
exhibiting both attributes.

Figure 1b displays examples from the dataset, highlighting the challenge of predicting gender without relying
on lipstick or heavy makeup.
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(a) FB-CMNIST:Sample images from the unbiased test set with low foreground and background color correlations.

(b) CelebA: Images showing gender-correlated features like lipstick and heavy makeup.

(c) COCO: Images annotated with gender and dual object-category bias indicators.

Figure 1: Example images from different datasets used in this study. Each subfigure shows dataset-specific
bias patterns.

1.3 COCO

To explore multi-attribute bias in a more complex and natural setting, we curated a subset of the COCO dataset.
Gender labels were inferred directly from image captions using keyword-based matching. Captions containing
only male-specific or only female-specific words were assigned binary gender labels (male = 1, female = 0).
Images with ambiguous or mixed references were excluded. Simultaneously, bias labels were derived from object
categories present in each image, grouped into two categories based on semantic themes.

• Male gender keywords (from captions): male, boy, man, gentleman, boys, men, males, gentlemen,
father, boyfriend

• Female gender keywords (from captions): female, girl, woman, lady, girls, women, females,
ladies, mother, girlfriend

• Bias Category 1 (sports-related objects): sports ball, baseball bat, skateboard, suitcase,
frisbee, skis, surfboard, tennis racket

• Bias Category 2 (kitchen-related objects): oven, refrigerator, sink, cup, fork, knife, spoon,
bowl

This keyword-based annotation enables a scalable and interpretable way to introduce and measure gender-
object bias interactions in a real-world dataset. Figure 1c illustrates sample images from the COCO dataset

2 Ablation Study

Table 1 decomposes GMBM into its constituent design choices. Adding ABIL only already lifts unbiased
accuracy by +12−44 % over ERM, showing that the soft cosine-attention forces the backbone to confront
spurious channels early. We then test two alternative attention rules: negative weighting, which up-weights least
correlated bias vectors, and scaled weighting, which rescales each bias vector to match the image-feature norm.
Both variants improve upon ERM yet fall 2−5 % short of our default cosine rule and exhibit higher SBA. The
full model—ABIL followed by gradient-suppression fine-tuning—adds the final +2% (CMNIST, q=0.99) and
halves SBA again, confirming that (i) directional relevance, not magnitude, should guide bias integration and
(ii) orthogonal gradient masking is crucial to eliminate the residual shortcut left by Stage-1.
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Table 1: Comprehensive ablation across three benchmarks. We start from vanilla ERM and add
components step-by-step. “ABIL only” isolates Stage-1 learning; rows labelled GMBM w/ neg. weighting and
GMBM w/ scaled weighting swap the cosine-similarity attention for the two alternative schemes described in
Section 4. The bottom row (Full GMBM) combines ABIL with gradient-suppression fine-tuning and our

default similarity weighting, yielding the largest gains in unbiased accuracy and the lowest SBA (↓).

Method
FB-CMNIST (unbiased) CelebA COCO SBA↓

q=0.90 q=0.95 q=0.99 Ub. Conf. Ub. Conf.

Vanilla (ERM) 82.5 57.9 25.5 93.2 89.1 70.8 64.6 0.61

+ ABIL only 95.6 89.0 69.5 95.8 93.0 81.3 77.8 0.11

+ GMBM w/ negative weighting 95.4 86.6 64.9 95.3 91.7 82.5 80.0 0.12
+ GMBM w/ scaled weighting 95.7 89.4 69.1 95.0 91.0 82.6 81.1 0.12

Full GMBM (ours) 96.1 91.5 74.6 96.7 94.5 83.8 83.9 0.11

3 MABA and its variants

The original Multi-Attribute Bias Amplification (MABA) metric is valuable but fragile: any mismatch between
train and test co-occurrence tables inflates its score and variance (Fig. 10). To stabilise evaluation, we exper-
imented with two straightforward fixes—Min-Support MABA, which drops severely undersampled pairs, and
Weighted MABA, which re-weights pairs by their train frequency (Table 2). While both remedies dampen
variance, they still inherit the core limitation of referencing training frequencies. Our Scaled Bias Amplification
(SBA) sidesteps the issue by comparing predicted versus actual group-attribute proportions solely on the test
set, down-weighting noisy estimates with the analytic factor ωg,m. As a result, SBA rises monotonically with
the bias ratio under ERM yet stays flat and low for both BAdd and GMBM, providing a single, shift-robust
scalar that aligns with qualitative behaviour across all three datasets.

Table 2: Conceptual comparison of MABA variants versus SBA.

Metric Handles Robust to Uses Train Key Idea
Imbalance Shift Labels

Original ✗ ✗ ✓ Equal treatment of all group-attribute pairs
Min-Support ✓ ✗ ✓ Excludes pairs with insufficient training samples
Weighted ✓ ✗ ✓ Weighs pairs by their training frequency
SBA ✓ ✓ ✗ Compares test vs. ground-truth, scaled by co-occurrence

4 Exploration of Weighting Strategies for Bias Mitigation

We explored various weighting strategies to enhance the bias mitigation framework proposed in the Generalized
Multi-Bias Mitigation (GMBM) methodology. The approach outlined in the main methodology section, which
adaptively integrates bias representations based on their alignment with image features, achieved the highest
performance across both unbiased and bias-conflicting scenarios. This empirically validates the superiority of
our method over alternative weighting schemes.

4.1 Weighted Integration in GMBM (BGS Implementation)

In this approach, we compute the cosine similarity between the vector representation of each bias attribute and
the image representation in the latent space. Bias features exhibiting higher correlation with the image are
assigned greater weights relative to less correlated biases. This strategy, detailed in the methodology section,
prioritizes the explicit disentanglement of dominant biases to improve fairness. The process is formalized as
follows:

h′
i = hi +

k∑
j=1

αjb
j
i ,

k∑
j=1

αj = 1 (1)
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αj =
ezj∑k
i=1 e

zi
, zj =

hi · bji
∥hi∥∥bji∥

, ∀j ∈ {1, 2, . . . , k} (2)

This weighting scheme effectively captures the relevance of each bias attribute, enabling targeted mitigation
of spurious correlations.

4.2 Negative Weighting Scheme

An alternative approach involves upweighting bias features that are less correlated with the image representation,
hypothesizing that these biasess are under-represented in the latent space. However, this negatively weighted
scheme, achieved by multiplying cosine similarities by −1 before applying the softmax, introduces training
instability. By prioritizing less relevant biases, the model inadvertently amplifies noise and undermines the goal
of targeted bias mitigation. The key drawbacks are:

• Noise Amplification: Low-correlation bias features are often weakly present or irrelevant. Upweighting
them injects noise, impairing the model’s ability to focus on task-relevant information.

• Compromised Bias Disentanglement: Emphasizing weak biases reintroduces entanglement, as these
features do not significantly contribute to spurious correlations but still interfere with the primary repre-
sentation.

This method is formalized as:

h′
i = hi +

k∑
j=1

αjb
j
i ,

k∑
j=1

αj = 1 (3)

αj =
ezj∑k
i=1 e

zi
, zj =

−hi · bji
∥hi∥∥bji∥

, ∀j ∈ {1, 2, . . . , k} (4)

4.3 Scaled Weighting Scheme

We also explored scaling bias features to match the magnitude of the image feature vector. This approach,
however, yielded no significant performance improvements. The results suggest that the directional alignment
of bias features with the image representation is more critical than their absolute magnitudes. Additionally, we
observed that image vector magnitudes stabilize early in training and exhibit minimal variation in later epochs.
Thus, magnitude-based weighting does not contribute meaningfully to adaptive bias mitigation. The method is
described as:

h′
i = hi +

k∑
j=1

αjb
j
i ,

k∑
j=1

αj = 1 (5)

αj =
|hi|
|bi|

, ∀j ∈ {1, 2, . . . , k} (6)

Table 3: Unbiased accuracy (%) on FB-CMNIST across bias ratios q.

Method Bias Ratio (q)

0.90 0.95 0.99

Vanilla 82.58 57.97 25.56
GMBM (BGS) 95.60 89.33 70.85
Negative GMBM 95.39 86.64 64.88
Scaled GMBM 95.71 89.43 69.10
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Table 4: Unbiased and Bias-Conflicting Accuracy (%) on CelebA

Method Wearing Lipstick Heavy Makeup

Unbiased Bias-Conflicting Unbiased Bias-Conflicting

Vanilla 94.88 90.48 91.90 84.70
GMBM (BGS) 95.98 92.86 94.69 90.25
Negative GMBM 95.33 91.74 93.30 87.31
Scaled GMBM 94.97 91.02 90.57 82.18

5 Latent Space Analysis of Image and Bias Representations

Our analysis emphasizes that the direction of feature vectors in the latent space is more critical than their
magnitude for encoding bias-related information. This insight underpins the gradient suppression fine-tuning
step in GMBM, where bias directions are penalized to mitigate their influence on the learned representations.

The following table reports the average magnitudes and cosine similarities of image and bias vectors through-
out training. The low variance in magnitudes indicates their stability, while consistent cosine similarities between
bias vectors suggest fixed directional encoding of attributes in the latent space.

Table 5: Latent-space statistics. Mean magnitudes are almost constant, whereas cosine similarities change
markedly with q, supporting our claim that direction, not norm, encodes bias.

Bias Ratio Stat Magnitude Cosine Similarity

Bias 1 Bias 2 Image Image/Bias1 Image/Bias2 Bias1/Bias2

0.90
Mean 9.71 8.65 10.02 0.48 0.58 0.43

Variance 0.01 0.01 0.67 0.0003 0.0004 0.0004

0.95
Mean 9.70 8.68 9.82 0.51 0.61 0.52

Variance 0.01 0.01 0.49 0.0006 0.0007 0.0005

0.99
Mean 9.69 8.73 9.24 0.60 0.70 0.70

Variance 0.01 0.01 0.20 0.0028 0.0037 0.0003

6 Necessity of Fine-Tuning Post-Initial Training

To further refine GMBM, we introduced a fine-tuning phase to enhance the robustness and bias-invariance of
image representations, particularly in the model’s final layers.

We conducted an experiment to assess the impact of bias injection in the latent space. Image representations
in the penultimate layer were grouped by bias attributes (e.g., foreground color), and inter-group cosine similar-
ities were computed. The results, shown below, indicate that the initial GMBM approach does not significantly
alter image representations, primarily affecting the classification layer.

Table 6: Average Inter-Group Cosine Similarity for Bias Attributes

Bias (%) ERM Model GMBM GMBM with BGS

90 0.77 0.77 0.79
95 0.74 0.74 0.78
99 0.67 0.67 0.77

The GMBM with Bias Gradient Suppression (BGS) significantly increases inter-group cosine similarity,
indicating that image representations become less influenced by bias attributes. This suggests that BGS fosters
more robust and task-relevant latent representations.

5



7 Alternative Fine-Tuning Strategies

The GMBM methodology includes a gradient suppression fine-tuning step to ensure bias-invariant represen-
tations at inference. Here, we explore alternative fine-tuning strategies to demonstrate the flexibility of our
framework and their varying impacts on bias mitigation.

7.1 Similarity-Based Fine-Tuning

This strategy introduces a regularization term in the loss function to penalize similarity between image and bias
representations. The modified loss is:

L = Lce + α · (h · b1) + β · (h · b2) (7)

where Lce is the cross-entropy loss, h is the image representation, b1 and b2 are bias representations, and α
and β are regularization hyperparameters.

Table 7: Hyper-parameter sweep for similarity-based fine-tuning. While modest gains are possible,
this variant never surpasses the default gradient-suppression strategy (see Table 1).

Bias Ratio β \ α 0 0.01 1

0.90
0 95.98 96.08 95.95

0.01 96.26 95.95 96.12
1 96.22 96.15 96.12

0.95
0 91.28 91.34 91.45

0.01 91.54 91.33 91.50
1 91.45 91.50 91.47

0.99
0 70.67 70.71 70.52

0.01 70.71 70.68 70.62
1 70.72 70.72 70.73

While this approach improves performance over the initial GMBM, it is less effective than gradient-based
fine-tuning. The regularization term reduces similarity but does not directly constrain gradient updates along
bias directions, limiting its ability to disentangle bias from task-relevant features.

7.2 Alternative Gradient-Based Fine-Tuning

We also explored a variant of gradient suppression where gradients are suppressed in a direction orthogonal to
the bias vector and away from the image representation. The direction vector l is defined as:

l =
(h · b)
∥b∥2

b− h (8)

The loss function becomes:

L = Lce +
∑
i

αi (∇hLce · li)2 (9)

This approach, while innovative, performs slightly worse than the primary gradient suppression method,
likely due to its indirect constraint on bias-aligned updates.

8 Limitation of MABA metric & Problem of Distribution Shift

In our study, we argue that one of the major drawbacks of the MABA metric is its lack of robustness to
distributional shifts between the train and test sets. In our scenario, since the bias has a spurious correlation
with the target label, the train and test sets do not necessarily share similar distributions with respect to the
bias and target attributes. To illustrate this point, we conducted an analysis on the FB-CMNIST dataset,
which was specifically constructed with differing train-test distributions to strengthen our argument.We have
demonstrated that the MABA metric produces arbitrary results in such scenarios. Here, we extend our analysis
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Table 8: Alternative gradient-based fine-tuning. Penalising updates in a direction orthogonal to both
image and bias vectors yields improvements over ERM but lags behind the proposed orthogonal-projection

penalty.

Bias Ratio β \ α 0.001 0.01 0.1

0.90
0.001 96.04 96.08 96.04
0.01 96.13 96.08 96.10
0.1 96.02 96.11 96.11

0.95
0.001 91.14 91.28 91.21
0.01 91.16 91.11 91.21
0.1 91.23 91.27 91.33

0.99
0.001 71.64 71.38 71.31
0.01 71.59 71.80 71.56
0.1 71.55 71.36 71.61

to a real-world dataset (CelebA) by examining its group-wise MABA bias scores, which are aggregated to
compute the final MABA score. To conduct this experiment, we modify the construction of the CelebA test set
by specifically sampling bias-conflicting points to enhance their representation. This approach is natural, as the
correlation between biased attributes and target labels may not exist in the real world. By slightly altering the
test distribution, we create a test set that more accurately reflects real-world conditions for model analysis.

(a) Train and test distribution of biased attributes using
random 0.7 train-test split

(b) Train and test distribution by using random 0.7
train-test split and customized test set to increase

reperesentation of bias conflicting points

Figure 2: Two-stage GMBM pipeline. Stage-1 (left) fuses image and bias embeddings via a
cosine-similarity attention; Stage-2 (right) fine-tunes the backbone with gradients suppressed along residual

bias directions, producing a single, deployment-ready feature for inference.

This table compares the train and test distributions under two scenarios: (1) when the test set was prepared
using a random split, and (2) when a custom test set was created with an increased representation of bias-
conflicting points.

Table 9: Effect of train–test distribution shift on bias attributes. (a) Standard random split leads to
near-identical distributions; (b) purposefully re-balancing the test set amplifies bias-conflicting points,

revealing MABA’s sensitivity to distribution shift and motivating the SBA metric.

Metric Original Distributions Custom Test Set
Chi-Square Test Statistic 3.3408 9937.6706
P-Value 0.3420 0.0000
KL Divergence (Train → Test) 3.8802e-05 0.1305
KL Divergence (Test → Train) 3.9222e-05 0.1728

We now compare the performance of the MABA metric on both datasets (only certain bias groups are shown)
and observe that the MABA value is higher in the second case, where the test set does not align well with the
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train set. This demonstrates that the MABA metric can reflect distributional mismatches, rather than just
capturing bias amplification caused by the model.

Table 10: Comparison of ∆gm1 (usual train test split MABA bias group score) and ∆gm2 (MABA score when
custom test set was used)

Group Bias1 Bias2 ∆gm1 ∆gm2
0 0 0 -0.1186 29.464
0 0 NA -0.0249 33.1475
0 NA 0 0.0342 33.1611
1 0 0 0.1186 -29.464
1 0 NA 0.0249 -33.1475

The overall average metric increases from 8.549 to 13.190, highlighting the MABA metric’s sensitivity to
distributional shifts. This underscores the need for a new metric that more effectively analyzes bias mitigation
in deep neural models.

9 Why Disentanglement through Attention Weighted Fusion

Below we give a formal justification of Adaptive Bias–Integrated Learning (ABIL). The key claim is that the
soft-attention fusion that appears to “amplify” every bias vector in fact exerts a negative feedback that drives
the backbone away from spuriousdirections so that the resulting representation cleanly separates task–relevant
signals from each known bias. We do this in two steps.

Proposition 1 (Gradient sign of the fusion term). For a training example (x, y) with backbone feature
h ∈ Rd and bias features b1, . . . , bk, let the attention weights be

αj =
exp

(
cos(h, bj)

)∑
m exp

(
cos(h, bm)

) , cos(u, v) = u⊤v
∥u∥ ∥v∥ .

Define the fused feature h′ = h+
∑

j αjbj that enters the cross-entropy loss Lce

(
g(h′), y

)
. Then

∇hLce = ∇h′Lce −
∑
j

αj

(
bj − cos(h, bj)h

) (
∇h′Lce · bj

)
.

Consequently the component of ∇hLce parallel to any bias direction bj carries the opposite sign of ∇h′Lce · bj
and therefore pushes h away from bj.

Proof. Differentiate h′ with respect to h. Because αj depends on cos(h, bj),

∂h(αjbj) = αj

(
I − cos(h, bj)Ph

)
b⊤j , Ph = hh⊤

∥h∥2 .

Applying the chain rule,∇hLce = (∂h′/∂h)⊤∇h′Lce, yields the stated expression. Coefficient of bj is−αj

(
∇h′Lce·

bj
)
, hence if ∇h′Lce · bj > 0 (the loss increases when we move along bj) the update moves opposite to bj . Sym-

metrically, if loss would decrease along bj the update moves in the positive bj direction, cancelling it out.

Intuitively, every time the classifier shows a tendency to exploit a bias vector (∇h′Lce ·bj ̸= 0), the backbone
update counter-acts that reliance in proportion to αj . Because αj is itself large only when h and bj are aligned,
the effect is strongest exactly where spurious leakage is greatest—a built-in corrective loop implicit in the
soft-attention rule.

Proposition 2 (Global objective favours orthogonality). Assume each bias attribute bj is y-independent
given the task signal s and that the classifier g is sufficiently expressive. Training ABIL minimises the population
risk

Rabil = E(x,y)

[
Lce

(
g(h+

∑
j αjbj), y

)]
.
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Any stationary point that is Bayes-optimal (i.e. ∇h′Lce = 0 for almost every (x, y)) must satisfy

E
[
αj (h

⊤bj)
]
= 0 ∀j,

hence in expectation h is orthogonal to every bias direction.

Proof. At a Bayes-optimal g the outer gradient ∇h′Lce vanishes. Taking expectations and using Proposition 1
gives E[∇hLce] = 0 with ∇hLce = −

∑
j αj(h

⊤bj)∇h′Lce · bj/∥h∥2 = 0. Because bj is independent of y given s,

∇h′Lce · bj has zero mean, leaving the factor αj(h
⊤bj). Since αj > 0 everywhere (softmax support), the only

solution is E[h⊤bj ] = 0.

Interpretation.

1. The additive term
∑

j αjbj injects the most salient bias cues into the feature seen by the classifier, forcing
the end-to-end model to confront spurious shortcuts during training instead of hiding them.

2. Because the gradient on h is signed opposite to the bias component (Proposition 1), SGD steadily reduces
the very cosine similarities that produce large αj . This negative feedback loop causes the attention to
migrate towards 0 as training proceeds, while simultaneously driving h into the sub-space orthogonal to
all bj .

3. Proposition 2 shows that any risk minimiser must satisfy E[h⊤bj ] = 0. Hence, the only stable solution
compatible with low classification error is a representation in which task signal and every known bias are
(linearly) disentangled. Empirically, this manifests in near-zero cosines already at the end of stage 1.

Stage 1 does not merely magnify biases; it couples them to the classifier in a way that converts bias alignment into

a learning signal against those very directions. The resulting bias-orthogonal vectors lj = bj− h⊤bj
∥h∥2 h exposed by

ABIL are precisely the residuals that stage 2’s gradient-suppression penalty can now explicitly constrain. Thus
the two stages form a logical continuum: attention-weighted fusion identifies and isolates spurious channels;
orthogonalisation freezes them out of the final predictor.

10 Statistical Justification for the SBA Weighting Scheme

Let the (empirical) bias–gap for group g of attribute m be

∆g,m = p̂pred(g,m) − p̂act(g,m), Nm =
∑
g

Cact
g,m, (10)

where Nm is the number of samples that exhibit attribute m. Scaled Bias Amplification (SBA) measures the
average absolute gap, weighted by

ωg,m =
1√

Nm + ε
, SBA =

1

|G||M |
∑
g,m

ωg,m |∆g,m|. (11)

Variance stabilisation by inverse square root: For fixed m the counts
(
Cact

g,m

)
g
follow a multinomial with

total Nm, hence Var
[
p̂act(g,m)

]
= pg,m(1−pg,m)/Nm = O

(
1/Nm

)
and the same order holds for p̂pred. Therefore

Var
[
∆g,m

]
= O

(
1/Nm

)
. (12)

Multiplying by ωg,m = 1/
√
Nm yields Var

[
ωg,m∆g,m

]
= O(1), equalising statistical noise across attributes of

vastly different sizes. This follows the classical inverse–standard–error principle used, e.g., in heteroskedastic-
robust regression.

Bias–variance trade-off and the uniqueness of α = 1
2 : Consider the more general family ωg,m = N−α

m

with α ∈ [0, 1]. Using (12)

E
[
ω2
g,m∆2

g,m

]
= O

(
N−(1+2α)

m

)
, Var

[
SBA

]
∝ 1

M

∑
m

N−(1+2α)
m .

• α < 1
2 causes the sum to diverge when any attribute is extremely rare, inflating estimator variance.
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• α > 1
2 over-penalises frequent groups and under-weights the informative rare ones.

Thus α = 1
2 (the square root) is the unique exponent that keeps the variance finite yet non-negligible for all

attribute sizes, giving the minimum-variance unbiased estimator under the ∆–method approximation.

Role of the additive ε: Whenever Nm = 0 the plain inverse-root weight would diverge. Introducing a small
constant ε > 0 regularises the weight:

ωg,m =
1√

Nm + ε
≤ 1√

ε
,

(i) prevents undefined (infinite) contributions,

(ii) bounds every single term in (11), making SBA Lipschitz-continuous with respect to sample counts, and

(iii) behaves identically to the un-regularised form whenever Nm ≫ ε.

The implementation sets ε = 1, analogous to Laplace’s “+1” smoothing. Empirically, this stabilises SBA under
heavy class-imbalance and distribution shift, as demonstrated in Tables 1 and 8.

The square-root denominator delivers a variance-stabilising transform: every attribute–gap contributes
comparable statistical uncertainty, ensuring that rare sub-groups receive sufficient yet not excessive influence.
The additive ε guards against pathological zero-count cases, making SBA numerically stable and well-behaved
across practical data regimes.
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