Multi-Attribute Bias Mitigation
via Representation Learning

Rajeev Ranjan Dwivedi®*-!, Ankur Kumar®! and Vinod Kumar Kurmi®
b

4Indian Institute of Science Education and Research (IISER) Bhopal

Abstract.

Real-world images frequently exhibit multiple overlapping biases,
including textures, watermarks, gendered makeup, scene-object pair-
ings, etc. These biases collectively impair the performance of modern
vision models, undermining both their robustness and fairness. Ad-
dressing these biases individually proves inadequate, as mitigating
one bias often permits or intensifies others. We tackle this multi-
bias problem with Generalized Multi-Bias Mitigation (GMBM), a
lean two-stage framework that needs group labels only while train-
ing and minimizes bias at test time. First, Adaptive Bias-Integrated
Learning (ABIL) deliberately identifies the influence of known short-
cuts by training encoders for each attribute and integrating them with
the main backbone, compelling the classifier to explicitly recognize
these biases. Then Gradient-Suppression Fine-Tuning prunes those
very bias directions from the backbone’s gradients, leaving a sin-
gle compact network that ignores all the shortcuts it just learned to
recognize. Moreover we find that existing bias metrics break under
subgroup imbalance and train—test distribution shifts, so we intro-
duce Scaled Bias Amplification (SBA): a test-time measure that dis-
entangles model-induced bias amplification from distributional dif-
ferences. We validate GMBM on FB-CMNIST, CelebA, and COCO,
where we boost worst-group accuracy, halve multi-attribute bias am-
plification, and set a new low in SBA—even as bias complexity and
distribution shifts intensifty—making GMBM the first practical, end-
to-end multi-bias solution for visual recognition.

1 Introduction

In recent years, the remarkable success of machine learning models
in image classification has been tempered by growing evidence of
their vulnerability to biases in training data. Typically, these biases
take the form of shortcuts—spurious correlations or unintended cues
that models exploit to boost average performance at the expense of
reliability and fairness [11, 35]. For instance, classifiers might learn
to associate water backgrounds with boats [32], face recognition sys-
tems can amplify gender and skin-tone biases present in their train-
ing sets [3], and in medical imaging, COVID-19 diagnostic models
have been shown to rely on dataset-specific artifacts—such as hos-
pital tags or watermarks—Ileading to performance degradation when
these cues are absent [6].

To counter these issues, a range of bias-mitigation approaches
have been developed. Most of these techniques operate under the
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Figure 1. Gradient suppression fine tuning

assumption of a single, known spurious cue and often demand privi-
leged group annotations during training or validation [29, 26]. How-
ever, recent studies demonstrate that this simplification fails to cap-
ture the complexity of real-world datasets—such as ImageNet and
popular facial attribute benchmarks—which typically harbor multi-
ple simultaneously; unknown biases like watermarks, textures, and
latent correlations. As a result, models trained under these condi-
tions may exploit various spurious features, leading to unpredictable
failures when any one of these cues is removed or altered. Al-
though in-processing strategies like distributionally robust optimiza-
tion (DRO) and last-layer retraining can improve worst-group perfor-
mance for a solitary bias, they falter in multi-bias scenarios [29, 16].
Likewise, unsupervised methods that leverage training dynamics can
uncover a dominant bias direction but lack the capacity to disentan-
gle more than one bias simultaneously [15, 36].

In addition to this, real-world datasets often contain multiple over-
lapping biases that jointly erode model robustness [17, 10]. The prob-
lem becomes even more challenging when the efforts to suppress one
shortcut shifts the reliance onto alternative spurious cues and even
amplify it, giving rise to a “Whac-A-Mole” dilemma in bias mitiga-
tion as stated by Li et al. [21].

Despite practical significance, effective strategies for mitigating
multiple interacting biases remain underexplored in the literature. To
address multi-bias robustness in vision models, we propose General-
ized Multi-Bias Mitigation (GMBM), a hyperparameter-light, two-
stage framework that uses group annotations only during training
to learn and then suppress multiple spurious-feature representations.
Crucially, at inference time, GMBM relies solely on the debiased
image feature—without bias labels, extra modules, or architectural
changes. GMBM performs debiasing in two stages:

@ Adaptive Bias-Integrated Learning (ABIL). For each known
bias attribute j, we train a encoder whose penultimate-layer out-
put captures that spurious signal. In parallel, the backbone’s
penultimate-layer output represents the core image feature. We



compute attention weights by applying a softmax over the co-
sine similarities between the image feature and each bias feature,
then fuse the representation by adding the image feature to the
weighted sum of bias features. Feeding this fused feature into the
classification head forces the model to identify and explicitly dis-
count each spurious channel, disentangling spurious features from
task-relevant cues.

0 Gradient-Suppression Fine-Tuning. We discard the bias en-
coders and fine-tune the backbone on clean image feature alone.
To eliminate residual bias influence, we first project each bias fea-
ture onto the subspace orthogonal to the image feature, obtaining
an orthogonal residual, as shown in Figure 1. We then use the stan-
dard cross-entropy loss with a penalty term that penalizes squared
gradient component along each orthogonal residual, scaled by a
penalty strength lambda. This enforces invariance to all known bi-
ases while preserving legitimate semantic information.

GMBM is evaluated on both a synthetic dual-shortcut benchmark
(with controlled foreground/background color cues) and a real-world
CelebA [24] and COCO [22] datasets. At inference time, only the
debiased backbone feature is passed to the classifier for efficient de-
ployment without further overhead. Across both settings, GMBM
consistently outperforms single-bias baselines and prior multi-bias
methods, improving worst-group accuracy by up to 8% and halving
spurious bias amplification.

Our key contributions can be summarized as follows:

(1) We formalize multi-bias mitigation in vision models and crit-
ically analyze the limitations inherent in single-bias approaches. (2)
We introduce GMBM, the first end-to-end two-stage framework—
comprising ABIL and gradient suppression—that adaptively inte-
grates and subsequently suppresses multiple bias representations. (3)
We create multi-bias evaluation benchmark designed to capture re-
alistic scenarios of intersecting biases. (4) We provide empirical ev-
idence demonstrating that GMBM establishes a new state-of-the-art
in robustness by significantly improving both unbiased and bias-
conflicting accuracy while simultaneously decreasing spurious bias
amplification.

2 Related Work

Bias Identification and Discovery. A key prerequisite for any mit-
igation strategy is understanding what biases a model has learned.
Recent work has focused on uncovering spurious correlations and
underperforming subgroups without explicit bias labels. For exam-
ple, Eyuboglu et al. [10] leverages cross-modal embeddings and an
error-aware model to pinpoint under-represented subgroups, while
Singla et al. [32] use activation maps to generate Salient ImageNet,
a dataset of core vs. spurious feature masks. GSCLIP [41] offers a
training-free, dataset-level shift explanation using CLIP [27] embed-
dings, and generative approaches have been employed to discover
unknown biases via latent space manipulation[19, 18]. Jain et al.
[15] further distill failure modes with linear probes and CLIP[27]
captions to explain model errors. While these methods excel at iden-
tifying single “shortcuts”, they typically do not scale to settings
where multiple, intersecting biases co-occur.

Debiasing in Single-Bias Scenarios.

A large body of work targets spurious correlations between a pri-
mary attribute and one secondary (bias) attribute. When bias labels
are accessible, several strategies have been developed. These include

robust optimization, which re-weights groups based on their perfor-
mance [29]; adversarial training, which aims to suppress bias-related
signals [7, 12]; and contrastive objectives, which explicitly work to
separate examples where the bias aligns with the primary attribute
from those where it conflicts [37, 34]. In situations where bias labels
are not available, various label-free methods have emerged. These
approaches, such as Learned-Mixin (LAD) [5], Environment Infer-
ence (EIIL) [4], Just Train Twice (JTT) [23], Learning from Fail-
ure (LfF) [25], CosfairNet [8], and contrastive-based debiasing tech-
niques [9], aim to discover or approximate bias groups by leverag-
ing model-based heuristics. While these methods have proven effec-
tive in addressing single spurious correlations, they typically operate
under the assumption of at most one dominant bias. Consequently,
their effectiveness is limited when multiple independent biases inter-
act within the data [18].

Multi-Attribute Bias Mitigation via Representation Learning.
Methods specifically designed to address the challenge of handling
simultaneous, unknown biases have only recently begun to emerge.
For example, Li er al. [20] proposes an iterative approach that as-
signs pseudo-labels to discover multiple biases and subsequently
trains deconfounded models. Similarly, Whac-A-Mole [21] employs
targeted augmentations to simulate a variety of bias types. How-
ever, both of these methods are primarily tailored to synthetic image
benchmarks and rely on hand-crafted bias generators. In contrast,
representation learning techniques offer a promising avenue for ad-
dressing an arbitrary number and variety of biases in natural settings.
These techniques include invariant feature extraction, information-
theoretic regularizers, and multi-view contrastive learning.

In this work, we address these challenges and introduce a unified
representation learning-based framework that aims to mitigate multi-
ple overlapping biases by a two-stage network. We present our novel
method in the following section 3.

3 Methodology

Problem Formulation: We consider an /N-way classification dataset

D = {(xm, y(l), bﬁl), ey bg))}?:l,
where n is the total number of samples in the dataset, each input @
carries a ground-truth label y® € {1,..., N'}, also bgi), R b](f) are
k known bias attributes. Let BV = foon(z”) € R? denote the
penultimate (“pen”) representation extracted by the backbone. We
seek a classifier

g:R* - {1,...,N}

that predicts y(i) accurately without exploiting any spurious attribute
b;. Concretely, we call b; spurious if H(Y | Bj) ~ 0, where

H(Y | Bj) = —Eg, [i P(Y =y|B;) log P(Y =y | B)]

y=1

is the Shannon conditional entropy of the random label Y given at-
tribute B;. In settings with multiple such biases, our goal is to en-
sure that the model’s decision remains correct even when each b;
is removed or contradicted, thus guaranteeing robustness across all
known bias dimensions.

Building on this formulation, we now introduce our two-stage
debiasing framework. First, in Section 3.1 we describe Adaptive
Bias—Integrated Learning (ABIL), which exposes and weights each
known bias cue via a soft-attention mechanism to challenge the



model to discount spurious features. Then, in Section 3.2, we de-
tail Inference-Time Gradient Orthogonalization, which fine-tunes the
backbone to enforce invariance to any residual bias directions.

3.1 Adaptive Bias—Integrated Learning (ABIL)

Our goal in ABIL is to isolate and then attenuate spurious bias
cues, while preserving and emphasizing task-relevant information.
We achieve this via a two-stream architecture and a dynamic fusion
mechanism, justified as follows:

(1) Bias Encoders. We allocate an encoder per known bias attribute
j, trained to predict bg-i) from X; denoted as fgcn. By dedicating sep-
arate parameters to each bias, we encourage the network to carve out
distinct subspaces in R? that specialize in capturing that particular
spurious signal. This explicit disentanglement simplifies later sup-
pression.

(2) Penultimate-Layer Representations: Both the main backbone and
each bias encoder output features from their penultimate (pen) layer:

h(l) = fpen (:E(l))y bgl) = f}zen (I(Z))y

We use the penultimate layer activations, as they capture a rich,
high-dimensional embedding of the input abstractions enough to en-
code semantic concepts [28, 40, 33, 14], not yet collapsed into class
scores. This makes h; and each bz suitable for measuring alignment
and for controlled fusion, without the interference of the final deci-
sion boundary.

(3) Soft-Attention over Bias Channels. Instead of naively concatenat-
ing or summing all b}, we compute:

. hi, bl
o = exp (cos(hi, b))

7ok exp (cos(hi, b))

This ensures that bias encoders whose representations align more
strongly with the current image feature h; receive higher weight, re-
flecting which spurious cues are most likely to influence the back-
bone. Furthermore, the use of softmax ensures that the attention
mechanism remains fully differentiable, which enables a co-adaptive
learning process during training. In this process, the backbone learns
to produce features that de-emphasize subspaces that are subse-
quently down-weighted. Additionally, employing softmax has two
key benefits: it prevents unbounded amplification of bias vectors and
yields an interpretable probability distribution over spurious factors.

u-v

cos(,0) = ol

(4) Bias-Modulated Fusion. We form the composite feature

k
h; = h; + Z oz;i) bz — LABIL = CE(g(h;), yi)

Jj=1

via a residual additive connection. In training we then optimize the
standard cross-entropy (CE) loss over our composite features. The
backbone’s original feature h; remains intact, while bias vectors act
as perturbations highlighting spurious directions. By presenting clas-
sifier with both clean and bias-accentuated signals, the network nat-
urally learns to reward reliance on h;’s invariant components and
penalize shortcuts through b?.

(5) Training with h;j. The fused feature h; is fed into the final clas-
sification head during training. This is done in an adversarial fram-
ing where the model must solve the task in the presence of explicit
bias cues. Consequently, the model internalizes robust features in h;

that remain predictive even when spurious channels are subsequently
suppressed (in our inference-time orthogonalization).

Together, with this algorithmic setup, ABIL does not merely hide
bias information, but systematically identifies, weights, and then
challenges it leading to a backbone representation that cleanly sepa-
rates task-relevant structure from known spurious factors.

3.2 Gradient-Suppression Fine-Tuning

After ABIL has equipped the backbone with bias-aware features, we
perform a brief fine-tuning step to guarantee that no residual spurious
components influence the final prediction. We reuse the bias encoders
trained in ABIL to extract b{ alongside the backbone feature h;. The
residual vectors

) R
=0b — —=Lh; (1
[[al?

capture the pure bias directions that ABIL exposed. By penalizing

k

S (Vi Lee )

j=1

we suppress any gradient component that would steer h; back into
bias subspaces, thereby enforcing provable invariance to all known
spurious channels. Details of our two-stage algorithm (including full
pseudocode) and all network/backbone architectures plus hyperpa-
rameter settings are provided in the Supplementary Material.
Overall Objective. Our framework consists of two sequential
stages—adaptive bias integration followed by gradient-based fine-
tuning (Fig. 2).

Stage @: Adaptive Bias Integration. During training, each image
feature is augmented by a weighted sum of bias-specific features. We
compute attention weights by comparing the image feature to each
bias feature using cosine similarity, then normalize these scores via
softmax. The resulting fused representation is optimized with stan-
dard cross-entropy loss against the true labels.

Stage @: Gradient-Based Fine-Tuning. In the second phase, we
drop all bias encoders and fine-tune using only the original image
feature. To eliminate any remaining bias influence, each bias fea-
ture is projected onto the space orthogonal to the image feature, and
we add a regularization term that penalizes any gradient component
aligned with these projections. A fixed penalty weight of 0.01 en-
sures a balance between bias suppression and classification accuracy,
yielding a single, robust model.

Having described our two-stage debiasing, we now turn to how we
choose and control bias attributes in our evaluation. In Section 4.1
we summarize three benchmark datasets and specific bias attributes
used and give the detailed algorithm 1 for our method.

4 Experiments & Evaluation Metric
4.1 Datasets

We evaluate our method on diverse set of multi-attribute bias
datasets, each designed to probe model robustness under complex
spurious correlations:

o FB-CMNIST [30]: This is a synthetic extension of the Colored
MNIST dataset[1], where each digit is modified with two spurious
biases—background color and foreground (digit) color—enabling
the study of models under multiple simultaneous correlations.
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Figure 2. Overview of the Generalized Multi-Bias Mitigation (GMBM) Framework. Stage 1 (ABIL)—Multiple bias encoders are trained alongside the
main model to explicitly capture known spurious features. Their outputs are integrated with the backbone feature, forcing the classifier to learn to discount
bias-aligned directions. Stage 2 (GSFT)—after discarding the bias encoders, the model is fine-tuned with a gradient-penalty term that suppresses residual
alignment with bias directions. This results in a compact, bias-invariant backbone used at inference time.

o CelebA [24]: CelebA comprises real-world face images annotated
with 40 binary attributes, including gender, hair color, age, and
various facial accessories. We employ this dataset to study multi-
attribute bias in a binary gender classification setting. Concretely,
we take the Male attribute as our target label and select Wear-
ing_Lipstick and Heavy_Makeup as spurious attributes since they
are known to correlate strongly with the female gender and can
introduce significant bias [18].

COCO [22]: We construct a custom dataset based on the
COCO02017 dataset [22] to study gender and object-based biases
following the work in [38]. Gender labels are derived from image
captions by scanning for gender-indicative keywords. To intro-
duce bias labels, we define two object bias categories using COCO
instance annotations. Bias Category 1 includes various sports and
outdoor objects objects while Bias Category 2 includes various
indoor and kitchen objects.

Implementation Details: For FB-CMNIST, a simple 7-layer convo-
lutional neural network was used as both the model backbone and
the bias-capturing classifier. For the CelebA and COCO datasets, the
standard ResNet-18 architecture was employed. The CMNIST model
was trained for 80 epochs, followed by 10 epochs of fine-tuning.
Similarly, the ResNet-18 models were trained for 20 epochs and fine-
tuned for an additional 10 epochs. In both cases, we used an initial
learning rate of 10~ for the main training phase and 10~* for fine-
tuning, both steps were employed with the Adam optimizer. A batch
size of 128 was used across all experiments. Table 1 summarizes the
hyperparameters used.

4.2 Evaluation Metrics

In our problem setting, “multiple bias” attributes may be corre-
lated with one another, jointly influencing the model’s predictions
and amplifying bias. Prior work has largely relied on two key
metrics—unbiased precision and bias-conflicting accuracy—to
evaluate the effectiveness of bias mitigation algorithms. While

Table 1. Key hyper-parameters used throughout all experiments.
Symbol Meaning Default
T ABIL epochs 6
1> Suppression epochs 3
Jo] Bias—loss weight 0.2
Asupp Gradient penalty 102
Embedding width 128

13

useful in simple scenarios dominated by a “single bias”, these
metrics fall short in capturing the nuanced effects of multiple, inter-
dependent biases. In such settings, evaluating individual unbiased
or bias-conflicting accuracies may overlook how well the model
disentangles and mitigates the joint influence of correlated biases.

Multi-Attribute Bias Amplification (MABA). Zhao et al. [39] ob-
serve that multiple bias attributes can interact to skew predictions in
ways that single-bias metrics cannot account for. MABA addresses
this by examining every combination of bias attributes m € M
together with each target label ¢ € G. For each pair (m, g), one
counts the number of training samples in which m and g co-occur,
denoted co-occurtrain(m, g), and normalizes over all labels to ob-
tain the training bias

CO-0CCUl'train (M, g)

Zg’ G CO-OCCUTI'train (m7 g/) .

Bt'rain = biastrain (m7 g) =

An analogous procedure on the model’s predicted labels yields the
test-time bias distribution biastest(m, g). To focus on meaningful
spurious associations, Ay, is defined as:

Agm = :H.{Btra,in > 1/‘g|} (Btest - Btrain)7

Agm thereby ignores the attribute—label pairs whose training fre-
quency does not exceed the uniform prior. The overall amplification
is then summarized by the average absolute shift

] 2 2 B

me/\/( 9g€eG



Algorithm 1 Generalized Multi-Bias Mitigation (GMBM)
Require: Dataset D = {(z,y,b1,...,bx)}; backbone f with
penultimate hook fpen; classifier g; bias encoders fplc‘n'k; bias-
classifier heads by _y; weights /3, Asupp
Ensure: Debiased backbone faebiased
Stage 1: Adaptive Bias-Integrated Learning (ABIL)
1: for all minibatch (X,Y, By,..., By) do

2: H + foen(X)

3: for j =1tokdo > bias representations
4. Bj + fgen(X)

5: end for

6: o < softmax(cos(H, B;))

7. H’ <—H+E§:1 a; B]‘

8: Lumain < CE(g(H'),Y)

9: Lbias Z?:l CE(bJ (Bj), Bj)

10: Update f, g, fyen, bj W.L.t. Linain + B Lias
11: end for

12: Freeze fpen : Discard by

Stage 2: Gradient-Suppression Fine-Tuning
13: for all minibatch (X,Y") do
14: H + foen(X)
15: for j = 1to k do

16: Bj < flen(X)
(H, Bj)
17: L; B — ——H
AR V7
18: end for

190 Le + CE(g(H),Y)

200 Lawa < 35 (Vi Lee - L;)?
21: Update fpen, g W.I.t. Lee + Asupp Lerad
22: end forreturn ficpiased < f

and the variance Var(Ag, ), together forming the Multimars [39]
metric. A well-debiased model will produce test-time bias distribu-
tions that closely mirror the training distributions, resulting in low X’
(minimal average amplification) and low variance (consistent mitiga-
tion across all attribute combinations). By capturing joint, distribu-
tional shifts rather than isolated biases, MABA provides a nuanced
measure of how spurious correlations propagate through the model.

Problems with MABA: A key limitation of the MABA metric is
that it treats all group-attribute pairs equally, irrespective of their fre-
quency within the training dataset. This becomes problematic when
certain combinations are severely underrepresented. In such cases,
the bias amplification estimate is unstable and sensitive to noise
due to the small sample size, and these rare, practically insignificant
combinations can disproportionately influence the metric. This equal
weighting scheme results in skewed interpretations, especially in im-
balanced datasets. To overcome this limitation, we give two variants
of the MABA metric:

@ Min-Support MABA: Exclude the group-attribute pairs that do
not meet a minimum support threshold (7) in the training data. This
ensures that amplification is computed only for statistically reliable
combinations, resulting in more robust and interpretable bias esti-
mates.

A';i',‘f”pp = 1 {co_occur; qin (g, m) > 7} - (Biest — Birain)

Min-Support MABA = |M| Z Z ‘ Agl:rl;suvp‘
geG meM

® Weighted MABA: Here we introduce a frequency-based weight-
ing scheme, where each group-attribute pair is weighted in propor-
tion to its occurrence in the training set. This ensures that more
representative groups have greater influence on the final amplifica-
tion score, leading to a more balanced and realistic measurement of
model-induced bias.

weighted
A

= Wqgm * [Btest(g7 m) — Birain (97 m)]

oh d c
M, = |M| Z |Awe|}, te ’ Wom = %

g,m g’ m! Ca'm’
where Cgm = CO_0CCUTy 4, (g, ™).

While the Min-Support MABA variant addresses challenges re-
lated to severely under-represented subgroups, and Weighted MABA
tackles both under- and over-representation, a critical limitation re-
mains: the original MABA metric and the proposed variants fal-
ter in the presence of distribution shift between training and test
datasets. If the joint distribution of attributes and groups differs be-
tween training and test sets, Ay, reflects not just model bias but
also dataset shift. The MABA metric may combine distributional
shifts between the training and test sets with model-induced bias
amplification. When the underlying joint distribution of attributes
m and groups g differs between the training set (Pirain (m, g)) and
the test set ground truth (Plegt, actual(m, g)), the difference Ay =
biasesi(m, g) — biaswain(mm, g) may reflect variations in dataset dis-
tributions rather than solely the model’s tendency to amplify training
biases, diminishing the metric’s ability to isolate effects specific to
the model.

4.3  Scaled Bias Amplification (SBA)

To quantify how much our model amplifies existing group—attribute
biases on unseen data (test set), we compute SBA using only test-
set counts. Let Cp”d and Cgaf,%“al be the number of test instances of
group g with attrlbute m predicted by the model and observed in the
ground truth, respectively. We first convert these into proportions:

actual
Com
E Cactual )

Cpred

pred m 72 cpred

acty,m

and define the amplification gap

Ag,m = predg,m -

acty, m.
To prevent noisy estimates for rare attributes from dominating the
score, we weight each gap by

1

Wg,m = tual ’
VOt + e

e The /- yields sublinear scaling so that rarer attributes receive
higher weight, but not excessively so—balancing sensitivity to
true bias amplification against variance from small-sample noise.

where:

e ¢ > ( ensures numerical stability (avoiding division by zero) and
caps the maximum weight when counts are extremely low.

Finally, SBA is the average weighted absolute gap over all groups
G and attributes M:

A= g 25 X, o ek

geEG meM



This formulation yields a single, interpretable scalar: sensitive
enough to detect bias amplification yet stable under rare-group noise.

Key Benefits of SBA: SBA delivers a more robust and interpretable
measure of model-induced bias amplification by relying exclusively
on test-set comparisons and a subgroup-aware weighting scheme.

e Robustness to Distribution Shifts. SBA uses only test-set ground
truth, avoiding the train-test co-occurrence mismatches that desta-
bilize MABA. As the bias ratio ¢ increases from 0.90 to 0.99,
SBA for ERM grows steadily (0.265—0.611—1.077), whereas
MABA’s variance explodes (>850 at ¢ = 0.99). In contrast, SBA
for BAdd and GMBM remains low and stable across all g (Ta-
ble 6).

o Interpretability and Subgroup Sensitivity. A test-set scaling
factor wg.,m weights each group—label pair by its frequency,
preventing majority-group dominance and ensuring rare, bias-
conflicting instances contribute proportionately to the final score.

e Stable Variance Profiles. SBA’s variance across subgroups rises
with ERM’s increasing bias (0.233—1.000 —2.748) but stays low
for BAdd and GMBM (< 0.258) even under extreme training
skew (Table 2), confirming its resilience to imbalance.

This combination of test-set centric evaluation and subgroup-
aware weighting makes SBA a more dependable fairness metric for
real-world, imbalanced, or multi-attribute datasets, overcoming key
limitations of prior metrics. Additional comparisons and ablations
appear in the Supplementary Material.

Table 2. Variance of SBA (| better) on FB-CMNIST test set
demonstrating GMBM’’s stability under increasing spurious correlation.

Model ¢=0.90 ¢=0.95 ¢=0.99

ERM 0.233 1.000 2.748

BAdd 0.013 0.048 0.256

GMBM  0.010 0.042 0.258
5 Results

We evaluate GMBM against multiple baselines on three benchmarks:
FB-CMNIST with controlled bias ratios (¢ = 0.90,0.95,0.99),
CelebA (male vs. gender-correlated attributes), and a custom COCO
split (sports/outdoor vs. kitchen/indoor object biases). We report (i)
unbiased and bias-conflicting accuracies, (ii) Multi-Attribute Bias
Amplification (MABA) variants, and (iii) the proposed Scaled Bias
Amplification (SBA) metric.

5.1 Unbiased & Bias-Conflicting Accuracy

Table 3 compares results of our method on FB-CMNIST dataset
with varying bias ratios of 0.90, 0.95, and 0.99. GMBM maintains
the highest unbiased accuracy across all bias ratios, achieving 96.1%
(g = 0.90), 91.5% (¢ = 0.95), and 74.6% (¢ = 0.99). This outper-
forms the strongest baseline (BAdd [30]) by +0.5, +2.5, and +5.1%,
demonstrating robustness even under extreme bias ratio (Table 3).
On CelebA dataset, for male classification with Wearing_Lipstick
and Heavy_Makeup as spurious attributes, GMBM attains the best
unbiased accuracies (96.7% and 95.5%) and bias-conflicting accu-
racies (94.5% and 92.0%), improving over highest baseline by up

to +1.5% in conflict cases (Table 4). On the COCO dataset, with
sports-object and kitchen-object biases, GMBM achieves unbiased
accuracies of 83.78% and 83.19%, and bias-conflicting accuracies of
83.85% and 82.35%, surpassing all baselines.(Table 5).

Table 3. Unbiased accuracy on the FB-CMNIST test set for various
methods under bias ratios g, highlighting GMBM’s superior robustness
compared to single and multi-bias baselines. (7 is better)

Method q=090 ¢=095 ¢=0.99
Vanilla 82.5 579 25.5
BC-BB [13] 80.9 66.0 40.9
EnD [34] 82.5 57.5 25.7
FLAC [31] 84.4 63.1 324
FairKL [2] 87.6 61.6 42.0
BAdd [30] 95.6 89.0 69.5
GMBM 96.1 91.5 74.6

Table 4. Unbiased and bias-conflicting accuracies on a 30% CelebA test
split for gender classification. (1 is better)
Method WearingLipstick HeavyMakeup
Unbiased  Bias-conflicting  Unbiased  Bias-conflicting
Vanilla 93.2 89.1 92.0 84.7
FairKL [2] 82.7 74.7 84.4 719
BC-BB [13] 91.6 85.8 89.7 81.8
EnD [34] 95.1 91.0 92.3 85.3
FLAC [31] 95.4 91.6 93.2 87.2
BAdd [30] 95.8 93.0 94.9 91.0
GMBM 96.7 94.5 95.5 92.0

Table 5. Unbiased and bias-conflicting accuracies on the COCO validation
set for gender classification with sports/outdoor vs. kitchen/indoor object
biases, showing that GMBM outperforms prior methods on both majority

and minority bias-conflicting groups. (1 is better)

Method Sports Object Kitchen Object
Unbiased  Bias-conflicting  Unbiased  Bias-conflicting

Vanilla 70.81 64.61 73.20 67.36
FairKL [2] 76.32 67.11 74.35 76.90
EnD [34] 77.11 70.97 82.38 77.34
FLAC [31] 80.02 77.31 80.22 79.95
BAdd [30] 81.28 77.81 82.91 83.05
GMBM 83.78 83.85 83.19 82.35

5.2 Multi-Attribute Bias Amplification (MABA)
Variants

To assess how models amplify existing group—attribute biases, we
compute two MABA variants: Min-Support and Weighted MABA.

On FB-CMNIST, under distribution shift between train/test,
MABA metrics exhibit high variance even for debiased models (vari-
ance > 850 at ¢ = 0.99), highlighting their instability when
co-occurrence statistics diverge (Table 6). On the CelebA, GMBM
achieves the lowest Min-Support MABA mean (0.67) and variance
(0.61), improving over ERM (mean 0.74, var 0.85) and BAdd (mean
0.90) (Table 7). Similarly, on COCO dataset, GMBM again yields
the most reliable bias estimates: Min-Support MABA mean 0.73 (vs.
8.53 for ERM) and variance 1.66 (vs. 96.27), demonstrating consis-
tent bias suppression (Table 8). Note that for weighted MABA, the
variance is not reported, since group-wise scaling distorts the inter-
pretability of variance.



Table 6. Comparison of Base MABA, Min-Support and Weighted MABA

means and variances for ERM, BAdd [30], and GMBM on FB-CMNIST
across bias ratios g, illustrating the high volatility of traditional MABA
metrics under distribution shift and GMBM'’s relative consistency.

¢ MABA Variant Metric ERM BAdd[30] GMBM
) Mean 14.34 16.78 16.69

Base MABA  y dance  393.01 51994  513.69

. Mean 14.24 1667 1668

0.90 Min Support Variance ~ 393.90 513.88  513.42
. Mean 10.98 1269 1269

Weighted Variance - - -

Mean 14.41 12.41 12.38

Base MABA v iance 38442 38158 388.78

. Mean 14.34 1243 1229

095 Min Support  y, iince 378,11 38213 379.09
Weighted Mean 10.71 775 7.79
Variance - - -

Mean 14.54 28 2666

Base MABA v iance 388,18 679.15  857.12

. Mean 14.69 28 2664

0.99 Min Support Variance ~ 385.48 679.72  853.92
Weighted gegn 10.35 16.62 18.84

ariance - - -

Table 7. Performance of MABA variants on CelebA 30% test split

MABA Variant Metric ~ ERM  BAdd [30] GMBM
) Mean 0.74 0.90 0.67
Base MABA vy ance 085 1.05 0.61
Min suboort Mean 0.74 0.90 0.67
Supp Variance  0.85 1.05 0.61
Weighted \l\;legn 0.86 1.03 0.70
ariance - - -

Table 8. MABA metrics on COCO-validation set

MABA Variant ~ Metric ERM BAdd[30] GMBM
Mean 8.549 9.46 7.88

Base MABA v, iance  628.50 63483 625.08
Min subport Mean 8.53 3.53 0.73
PP Variance  96.27 14.65 1.66
Weightod Mean 8.84 2.60 0.35
Variance - - -

Despite these improvements, the high variability of MABA metric

under distribution shift motivates our SBA metric.

5.3 Scaled Bias Amplification (SBA)

SBA quantifies how much a model’s predictions exaggerate the cor-
relation between different groups and attributes when evaluated on a
test set. Unlike some other metrics, it is calculated using only the test
data, which makes it more reliable when the biases appearing in the
training data are different from the test data. It also uses a weighting
system to ensure that rare combinations of groups and attributes are
not ignored, providing a more balanced view of bias across different
subgroups.

Under ERM, SBA increases sharply with bias ratio (0.26 — 0.61
— 1.07), whereas GMBM remains low and stable (0.05 — 0.11 —
0.32), confirming effective mitigation of spurious amplification on
the FB-CMNIST dataset (Table 9). On CelebA, GMBM achieves
SBA 0.35 vs. ERM 0.37 and BAdd 1.39; on COCO, SBA is 0.10

Table 9. SBA scores for ERM, BAdd [30], and GMBM across FB-CMNIS,
CelebA, and COCO datasets, showcasing GMBM’s effectiveness at
maintaining low and stable bias amplification on unseen data. ( | better )

Dataset Bias Ratio ERM BAdd[30] GMBM
0.90 0.26 0.05 0.05
CMNIST 0.95 0.61 0.11 0.10
0.99 1.07 0.32 0.32
CelebA - 0.37 1.39 0.35
COCO - 0.84 0.15 0.10

for GMBM vs. 0.84 (ERM) and 0.15 (BAdd). Across all settings,
GMBM consistently yields the lowest, consistent, and interpretable
SBA scores, underscoring its superior ability to prevent bias amplifi-
cation in unseen data (Table 9).

GMBM not only attains state-of-the-art unbiased and bias-
conflicting accuracies across synthetic and real-world bench-
marks, but also demonstrably curtails multi-attribute bias amplifica-
tion—both under traditional MABA variants and our more robust
SBA metric. These results validate GMBM’s effectiveness in learn-
ing and suppressing multiple spurious features. Alternative attention-
weighting schemes, full breakdowns by bias ratio, and latent-space
diagnostics—appears in the Supplementary Material.

6 Discussion & Future Work

Integrating multiple bias representations via attention—weighted fu-
sion steers the backbone toward the most influential shortcuts, driv-
ing SBA down to 0.05 on FB-CMNIST and 0.10 on COCO while
simultaneously boosting bias-conflicting accuracy. Yet GMBM still
relies on group labels for every known bias attribute at training time a
reasonable assumption for curated benchmarks, but onerous in many
real-world pipelines where such annotations are unavailable. A sec-
ond limitation is its sensitivity to biases that are nearly inseparable
from the target label: on CelebA, SBA of 0.35 suggests that gender
remains partly entangled with make-up cues despite mitigation.

Future work can relax these constraints by augmenting ABIL with
unsupervised bias discovery. One avenue is to cluster systematic fail-
ure modes or latent shortcut directions uncovered by linear probes,
echoing the approach of Jain et al. [15]; the discovered prototypes
could be fed back into the same gradient-suppression stage to remove
unknown biases without extra labels. Complementarily, an online
gating mechanism that attenuates any feature whose gradient persis-
tently correlates with emerging shortcut clusters would let GMBM
adapt post-deployment. These extensions would broaden applicabil-
ity while preserving the label-light character of the framework.

7 Conclusion

We present GMBM, a two-stage framework that (i) learns to ex-
pose and attenuate multiple spurious cues via attention-based bias
integration and (ii) enforces invariance through gradient-suppression
fine-tuning. In tandem, we introduce the Scaled Bias Amplification
(SBA): a test-time metric that quantifies the extent to which a model
exaggerates group—attribute correlations under distributional shifts,
while normalizing for subgroup over- and under-representation. Our
experiments on synthetic and real-world image-classification bench-
marks show that GMBM delivers state-of-the-art unbiased and bias-
conflicting accuracies while dramatically reducing bias amplifica-
tion. By tackling multi-attribute spurious correlations in a label-light,
inference-efficient way, we advance fairness in vision models and
pave the way for adaptive, domain-aware debiasing strategies.
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