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Abstract

Deep neural networks trained on biased data often inadvertently learn unintended
inference rules, particularly when labels are strongly correlated with biased features. Ex-
isting bias mitigation methods typically involve either a) predefining bias types and en-
forcing them as prior knowledge or b) reweighting training samples to emphasize bias-
conflicting samples over bias-aligned samples. However, both strategies address bias
indirectly in the feature or sample space, with no control over learned weights, making it
difficult to control the bias propagation across different layers. Based on this observation,
we introduce a novel approach to address bias directly in the model’s parameter space,
preventing its propagation across layers. Our method involves training two models: a
bias model for biased features and a debias model for unbiased details, guided by the
bias model. We enforce dissimilarity in the debias model’s later layers and similarity
in its initial layers with the bias model, ensuring it learns unbiased low-level features
without adopting biased high-level abstractions. By incorporating this explicit constraint
during training, our approach shows enhanced classification accuracy and debiasing ef-
fectiveness across various synthetic and real-world datasets of different sizes. Moreover,
the proposed method demonstrates robustness across different bias types and percentages
of biased samples in the training data.

1 Introduction
In recent times, there has been a growing concern about the latent possibilities of grow-
ing bias and fairness issues within artificial intelligence (AI), deep learning frameworks and
models. Bias can infiltrate AI frameworks during various stages, starting from data acquisi-
tion, extending to model creation and algorithm development, and even up to the deployment
stage [33]. The increasing use of deep learning models in various sensitive and high-impact
applications makes it extremely crucial to identify and mitigate bias at all potential stages to
ensure the development of fair and trustworthy AI workflows [25].

Deep learning models tend to learn easy-to-learn features and attributes much faster
than hard-to-learn features such as actual shapes and high-level abstraction of an object
[9, 26]. For instance, while training a cow classifier, the model may fail to classify the
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cow if it is placed on the surface of a lake or on a beach. This happens because the model
has a contextual bias, and to make a confident prediction, the correct context, typically a
green grassland, is required. The absence of a non-correlating background or context re-
sults in incorrect prediction. The deep networks are prone to noise memorization faster
and quicker than their intended purpose [2]. The models often suppress shapes and learn
color [7], texture [9] and attribute bias [12]. Henceforth, the model is dependent on bias
and so performs better on in-bias or bias-aligned samples and fails to perform as soon as
there is a bias shift or as the non-correlated data samples are encountered. A classic ex-
ample of this is a cow in a green pasture and a camel in a desert. If the backgrounds of
these images are exchanged, the model’s performance drops drastically [6]. These unin-
tended bias leads the trained model to make erroneous inferences by relying on shortcuts.

Figure 1: Gradient activation map of
biased and debiased models in lower and
higher layers for the BFFHQ dataset. (a)
and (b) illustrate gender predictions of the
biased and debiased models at the initial
layer. It is evident that the debiased model
closely corresponds to the biased model. In
contrast, (c) and (d) show no correspon-
dence as the learned weights differ at the
higher layer. (Best view in color).

Current methods for bias removal use various ap-
proaches. A substantial body of research relies on ex-
plicit bias annotations [4, 15, 19, 22, 29, 32]. How-
ever, this reliance on explicit annotations can be costly
and time-consuming, necessitating a thorough under-
standing of the potential spurious correlations between
bias attributes and target labels. Another significant
area of study in bias mitigation centres on algorithms
that utilize reweighting techniques [20, 26]. These al-
gorithms assign higher weights to the bias-conflicting
samples than the bias-aligned samples during the train-
ing phase. A notable approach, among reweighting
techniques, involves training two models: (a) a bias
model that learns the dataset’s bias and (b) a debias
model that leverages the learning of the bias model
to identify bias-aligned samples and weigh them down
during training phase so that a spurious correlation be-
tween bias attributes and the target label is not formed.
Subsequently, in the continuation to the reweighting,
several studies propose improvement by modifying the
model architecture [17, 21].

Although the proposed methods demonstrate their effectiveness in specific applications,
they encounter some major challenges. While one type of method suffers the challenge of
expressing and quantifying biases precisely for the model to handle them explicitly, another
type based on sampling or re-weighting is prone to assigning disproportionately high weights
to noisy or outlier samples, especially when they constitute a minority in the dataset. Fur-
thermore, when down-weighting bias-aligned samples, these techniques also discard valu-
able debias features alongside the bias features, which could benefit the learning process.
Moreover, relying solely on the existing re-weighting technique may introduce new spurious
correlations between bias and target labels when multiple biases exist.

In this study, we address some of the existing challenges by introducing a novel method
that mitigates bias in the model’s parameter space. It is observed that the learned parameters
of a biased model and a debiased model at initial layers are similar, while the parameters
in the final stage layers differ. To illustrate this observation, we generate the gradient acti-
vation maps [30] for predictions from biased and debiased models at both initial and later
layers. In Fig. 1, (a) and (b) demonstrate that both models at the initial layer utilize com-
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mon features for gender prediction. In contrast, in (c) and (d), the parameters of the biased
model in the later stage utilize the mouth region, while the debiased model employs other
features for gender identification. Our method builds on the insights that low-level features
of biased samples are not detrimental to learning, but it is the unintended correlation be-
tween biased features and target labels that poses the problem. Thus, instead of discarding
low-level features of bias-aligned samples by simply down-weighting them, we propose to
harness them by enforcing a (dis)similarity constraint in the parameter space of the debias
and bias model. Specifically, we enforce similarity constraints on the initial layers of these
models while introducing an orthogonality constraint on the final layers. The purpose of
these constraints is twofold: first, to ensure the preservation of low-level features from all
input samples, including bias-aligned ones, while simultaneously preventing the formation
of unintended correlations with the target label. The orthogonality constraint, applied at the
final layer, compels the debias model to focus on learning the signal rather than the bias. By
applying this constraint in the parameter space, our method also prevents the propagation of
biases through subsequent layers. Our main technical contributions are:

• We introduce a novel approach to mitigate bias by model parameter realignment, along
with a unique architecture design to prevent the acquisition and propagation of bias
during model training.

• We demonstrate the utility of bias-aligned samples and propose to leverage them in the
model training through a simple yet effective constraint within the model’s parameter
space. Further, by applying an orthogonality constraint to the later-stage layers, we
direct the debias model to acquire distinct learning compared to the bias model, thus
preventing spurious correlations between bias attributes and target labels.

• The proposed method demonstrates superior performance when compared to both
types of approaches: those relying on bias labels and those solely based on sample re-
weighting schemes across two real-world datasets and two well-controlled synthetic
datasets.

2 Related Work
This section classifies prior research in the field of debiasing techniques, with a specific em-
phasis on reducing bias. Debiasing efforts can be categorised into two primary groups: debi-
asing through the utilisation of prior knowledge and debiasing approaches based on reweight-
ing. These categories include a range of methods, each with its own distinct methodology
and consequences, which are evaluated and compared to our approach.
Debiasing using prior knowledge A variety of works focus on mitigating bias through
prior knowledge of bias types in datasets, utilizing bias annotations and distinct prediction
heads for different biases [3, 4, 14, 17, 19, 23, 29, 31, 32, 35]. Some methods, like those
proposed by Wang et al. [35] and End et al. [31], employ predefined representations of bias
or orthogonal gradients to debias data, though these can be complex and cost-intensive to
apply in real-world settings.
Debiasing using sample reweighting Reweighting-based debiasing methods involve sam-
ple weighting, label usage, or model architectures to counter biases [13, 15, 17, 20, 21,
22, 26, 28, 34]. Techniques range from dual model architectures to ensemble methods and
feature-level swapping. However, methods like Bias Swap [16] or those by Wu et al. [36],
which rely on image translation, are limited by their complexity. Other approaches, such as
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those using adversarial learning or alternative loss functions [3, 18, 35], show promise but
often perform similarly to conventional models.
In summary, existing debiasing techniques vary widely, from employing prior knowledge to
reweighting samples and using complex model architectures. Despite their innovative ap-
proaches, these methods often face challenges related to implementation complexity, costs,
and the handling of hyperparameters. Our novel approach aims to synthesize the strengths of
these methodologies while overcoming their limitations to improve debiasing effectiveness.

3 Problem Formulation
We address this as a N -class classification problem where a dataset D contains inputs x with
attributes {a1, . . . ,ak}, each attribute ai taking values from a predefined set Ai. The main
objective is to construct a predictive function f that operates under a specific set of decision
rules Ft . This function f aims to accurately predict the target attribute y, where y = at and
at is an element of the set At . For the purpose of determining whether or not there is bias
within the dataset D, the following conditions are crucial:

1. Correlation Condition: There exists a non-target attribute ab, different from y, that
correlates significantly with y. This is quantitatively assessed using the conditional
entropy H(y|ab), which approaches zero, indicating that ab nearly determines y.

2. Decision Rule Condition: There is an effective alternative decision rule sb, not in-
cluded in Ft , capable of classifying based on ab. This suggests that ab could indepen-
dently serve as a strong predictor for y.

When these conditions are met, ab is recognised as a bias attribute in D. Furthermore,
instances in D are classified according to their alignment with the bias attribute ab. Bias-
Aligned: An instance is considered bias-aligned if it conforms to the alternative decision rule
sb, which align with the bias observed in ab. Bias-Conflicting: Bias-conflicting instances
are those that do not conform to sb, indicating non-typical behaviour despite a correlation
between ab and y. The development of f and Ft must not only achieve high prediction
accuracy for y but also address and mitigate the biases associated with ab to ensure fairness
and equity in the predictive outcomes across all classes in D.

4 Proposed Method
We propose a novel framework CosFairNet, that addresses the problem of bias through a
principled realignment of model weights. Our approach is predicated on the use of cosine
(dis)similarity measures to modulate the influence of bias, which manifests at varying magni-
tudes across different network layers. Specifically, we apply cosine similarity to synchronize
the lower layers of the bias model Fb with the corresponding layers of the debias model Fd ,
thus aligning their basic low-level feature learning. This step ensures that both models ex-
tract similar foundational details from the data. In contrast, we employ cosine dissimilarity
at the last stage layers to encourage Fd to diverge from Fb in its high-level feature represen-
tations. During training, Fb excels in identifying bias-aligned samples. Leveraging this, we
make the initial layers of Fb akin to those of Fd ; at the same time Fb seeks to capture biases,
and Fd aims to learn genuine features. This adversarial arrangement prompts realignment of
weights that enhances the performance of both models by prioritizing features that improve
Fd’s debiasing capability. Furthermore, by ensuring the model layers are constrained to the
unit hyper-sphere, we measure similarity and dissimilarity using angular distance, defined as

Citation
Citation
{Bahng, Chun, Yun, Choo, and Oh} 2020

Citation
Citation
{Ko, Lee, Park, Noh, Park, and Kim} 2023

Citation
Citation
{Wang, He, Lipton, and Xing} 2019



RAJEEV R DWIVEDI, PRIYADARSHINI K, VINOD K KURMI: COSFAIRNET 5

follows:

S = LcosSim(Fb,Fd) =
LFb ·LFd

∥LFb∥ · ∥LFd∥
, (1)

Cosine Similarity 

Cosine Dissimilarity 

Classification Layer Classification Layer

Classification LayerClassification Layer

Figure 2: The architecture of CosFairNet depicts the
debiasing mechanism where Fd and Fb are the debias and
bias models, respectively. W represents the weighting of
samples. Cosine similarity is employed to align (initial
layers) or de-align (later layers) Fd and Fb model layers
to ensure differentiated learning of biased and unbiased
representations. In figure, CE(.) stands for cross-entropy
loss, GCE(.) for generalized cross-entropy loss and W for
relative difficulty score.

where LFb and LFd are the layer parame-
ters. Given the unit norm constraint, the dot
product similarity yields the cosine of the
angular separation between the two param-
eter vectors, with S ranging from 1 to -1,
indicating 0-degree (aligned) to 180-degree
(opposed) separations, respectively.

4.1 Model Architecture
The model architecture, as depicted in
Fig. 2, is a dual model framework inspired
by the two-model setup from [26]. The ar-
chitecture consists of two parallel networks:
the debiasing model Fd and the biased
model Fb, both featuring the same structural
design. The training process is bifurcated
into two distinct yet interconnected phases.
Initially, Fb is trained using a generalized
cross entropy (GCE) loss to effectively cap-
ture bias-aligned samples. Concurrently,
Fd is trained with a weighted cross entropy
(CE) loss, wherein the weights W are ad-
justed to give precedence to bias-conflicting
samples. A pivotal characteristic of this ar-
chitecture is the synergistic interaction be-
tween the corresponding layers of Fd and Fb. During the second phase of training, the layers
“k” of both models undergo a process of alignment or dealignment, contingent upon their
position within the model’s layer position. Following is a more detailed explanation of how
biased and debiased models are trained.

Training a biased Model Our approach to training a biased model involves employing the
generalized cross entropy (GCE) loss function [37] to amplify the model’s unintentional de-
cision rule. The GCE loss, defined as GCE(p(x;θb),y) =

1−py(x;θb)
q

q , uses p(x;θb) to repre-
sent the softmax output, and py(x;θb) as the probability of the target attribute y. The hyperpa-

rameter q, in the range (0,1], modulates bias amplification, with limq→0
1−pq

y
q mirroring stan-

dard cross entropy (CE) loss. Unlike CE loss, GCE loss’s gradient, ∂GCE(p,y)
∂θb

= pq
y

∂CE(p,y)
∂θb

,
disproportionately weighs samples where the model’s prediction strongly aligns with the tar-
get. This emphasis on “easier” samples leads to an augmented bias in the model’s learning
process compared to CE-trained networks, hence giving us a strong biased model.

Training a debiased model While concurrently training a biased model as previously de-
scribed, we also train a debiased model. This involves employing the CE loss with re-
weighting based on a relative difficulty score W(x). The score is formulated as follows:
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W(x) = CE(Fb(x),y)
CE(Fb(x),y)+CE(Fd(x),y)

. Here, Fb(x) and Fd(x) represent the softmax outputs of the
biased and debiased models, respectively. This score quantifies the degree to which each
sample may introduce bias that conflicts or aligns with our observations. Specifically, for
bias-aligned samples, where the biased model Fb incurs a smaller loss as compared to the
debiased model Fd during early training stages, the difficulty score is low, resulting in a
smaller weight for training the debiased model. Conversely, for bias-conflicting samples,
where the biased model Fb experiences a larger loss compared to the debiased model Fd , the
difficulty score is high (close to 1), leading to a higher weight for training the debias model.

4.2 Realignment of Debias-Model’s Parameters
In the consequent training phase, the Fb and Fd models are updated with GCE(p(x;θb);yi)
and W ·CE(p(x;θd);yi) respectively. Realignment of Fd parameters with Fb occurs within
the same batch and step, using cosine similarity as a loss function (see Eq. 1). This similarity
measure ranges from −1 to 1, indicating how vectors are oriented in the multidimensional
space. During the second back-propagation, cosine similarity and dissimilarity are applied
between the models’ layers—initial layers use similarity, while later layers use dissimilarity.

Given Fb’s ability in correctly classifying bias-aligned samples, the second updates focus
solely on Fd’s layers, leaving Fb layers unchanged. It’s worth noting that gradients flow from
higher to lower layers during backpropagation. As a result, while updating the later layer of
the Fd model, the optimisers may also change the layers before the given layer due to their
momentum. To correctly update the Fd model, all layers must be frozen during the second
update except the layer to be updated or their learning rate turned to zero. After the second
update of Fd , the training step concludes, enhancing debiasing accuracy. The specifics of
this training method are described in the algorithm and can be found in the Supplementary
Material.

5 Experiments and Results
We conduct comprehensive experiments to evaluate our method across multiple datasets, in-
cluding two synthetic datasets: Colored MNIST [26] and Corrupted CIFAR-101 [26] and
two real-world datasets: BFFHQ [16] and Dogs & Cats [21]. We first evaluate the effective-
ness of our model for the classification task under different percentages of biased samples
within the datasets. Subsequently, we perform additional experiments to address the follow-
ing research questions:

Q1 How does the performance of our method change with an increasing ratio of biased
samples in the training data, compared to state-of-the-art baselines?

Q2 What is the impact of each constraint, including similarity and dissimilarity, applied
to the model’s weights on the overall performance?

Q3 How effective are the learned embedded features in separating target classes and dis-
tinguishing between bias and debias samples?

Datasets We evaluate our debiasing approach using four datasets. The Colored MNIST
dataset, a modified version of MNIST with colored digits to induce spurious correlations,
ensures consistency in dataset comparisons. The Corrupted CIFAR-101 dataset intro-
duces bias through environmental distortions like fog and brightness changes. The BFFHQ
dataset, derived from Flickr-Faces-HQ, uses gender as a bias to analyze age, while the Dogs
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& Cats dataset associates animal species with color. Further information regarding the
datasets can be found in the supplementary material. Additionally, details and results on the
BAR dataset [26] can also be found in the supplementary material.

Implementation details: We use a multi-layer perceptron (MLP) with three hidden
layers for Colored MNIST, as suggested by [26] and [21]. For Corrupted CIFAR-101, we
use ResNet20 and train it from scratch with random initialization. For all other datasets,
we use pre-trained ResNet18 [10] topped with 3 MLP layers with 0.5 dropout between the
layers. The Adam optimizer is used for all datasets, with a learning rate of 0.001 for all the
datasets. Additionally, we keep the batch size of 256 for Colored MNIST and Corrupted
CIFAR-101, while 64 for the BFFHQ [16] and Dogs & Cats [21] dataset.

5.1 Q1 - Comparative performance analysis with state-of-the-art
under varying bias ratios

Firstly, we analyze the effectiveness of our model on the well-controlled datasets - Colored
MNIST adapted from [26] and Corrupted CIFAR-101 from [11], where the bias takes the
form of color and corruption, respectively. Table 1 shows the results on Colored MNIST
with different bias-conflicting ratio datasets. Due to the diverse construction of the synthetic
Colored MNIST dataset, we limited our analysis to methods that utilised the same dataset as
ours. As stated by [8], the color and small-level features are learned in the early layers, and
the information is passed on to the later layers (classification layers) of the model. Therefore,
the outcome is expected to be biased in the presence of easy-to-learn bias features, such as
color, while intrinsic features like the shape of the digits are suppressed.

We compare the performance of the proposed model with state-of-the-art methods. Our
model consistently outperforms all the methods across all variations of bias ratios. We also
benchmarked our model against the recent work AmpliBias [18]. As shown in Table 1, the
proposed model consistently outperforms AmpliBias across all bias ratios by varying mar-
gins. Notably, our method demonstrates robust performance, with an average improvement
of 3% over LFF and DisEnt, and over 9% compared to AmpliBias at 95% bias ratio. Simi-
larly, for 99.5% bias ratio, the proposed model’s improvement is 3% over LFF and DisEnt,
and over 1% compared to AmpliBias. We suspect that these methods struggle with ineffec-
tive sample-reweighting when minority instances are rare, as also stated in [36]. However, we
achieve a more balanced performance not only when trained with a very low bias-conflicting
ratio but also when the bias-conflicting ratio is significantly high, a scenario often encoun-
tered in real-world applications.

Colored MNIST [26]
Bias Ratio(%) 99.50 99.00 98.00 95.00

Vanilla 34.75 49.87 65.72 81.72
HEX [35] 42.25 47.02 72.82 85.50
LNL [15] 36.29 49.48 63.30 81.30
EnD [31] 35.33 48.97 67.01 82.09
LFF [26] 63.49 72.94 80.67 85.81

DisEnt [34] 63.98 76.33 82.38 85.54
AmpliBias [18] 66.01 67.79 71.32 78.88

BiasEnsemble [21] 66.71 75.80 82.98 86.51
A2 [1] 67.47 70.68 76.93 86.09
Ours 67.25 78.03 84.22 88.64

Table 1: Comparative accuracy performance (in
%) on bias conflicting samples of various debi-
asing algorithms on the Colored MNIST dataset,
with respect to different bias ratios.

Corrupted CIFAR-101

Bias Ratio(%) 99.50 99.00 98.00 95.00
Vanilla 17.93 22.72 30.21 45.24

HEX [35] 15.39 16.62 17.81 21.74
ReBias [3] 22.68 27.92 32.09 43.74
EnD [31] 20.74 24.19 38.88 40.54

A2 [1] 23.37 27.54 30.60 37.60
DisEnt [20] 31.97 31.22 36.98 46.40

LFF [26] 29.87 33.84 40.21 51.83
ε-SupInfoNCE [5] 33.71 38.28 41.87 51.62

LogitCorrection [24] 34.56 37.34 47.81 54.55
AmpliBias [18] 34.63 45.95 48.74 52.22

Ours 36.34 43.94 50.83 60.06
Table 2: Comparative accuracy performance ( in %)
on bias conflicting samples of various debiasing algo-
rithms on the Corrupted CIFAR-101 dataset.
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We tested our method on the CIFAR-10 dataset, which is more complex than the Colored
MNIST dataset. As with CMNIST, on the Corrupted CIFAR dataset, the model tends to
learn simpler features like textures [2, 9] over intrinsic features. Table 2 shows our results
on the Corrupted CIFAR-101 dataset. Despite the dataset’s difficulty, our method outper-
forms most current models, including recent advancements that focus on bias mitigation
through logit correction loss minimization [24]. Introducing orthogonality constraints in the
parameter space significantly enhances performance, even when biases such as low-level
texture features are present. This improvement may stem from biases in the initial layers
not transferring to the final layers, as the debiased model Fd starts similar to Fb but becomes
significantly different, leading to an unbiased model.

Our model excels across various bias-conflicting ratios, surpassing most other models [5,
24, 27], except at a 99% bias ratio, where Amplibias has a slight 2.01% lead. We believe our
model’s success is due to its ability to utilize low-level features effectively while preventing
false correlations between targets and biases by implementing orthogonality constraints.

In Table 3 and Table 4, we present an evaluation of our proposed method against state-
of-the-art algorithms on two distinct real-world datasets BFFHQ and Cats & Dogs respec-
tively. BFFHQ exhibits facial attributes as bias, while Cats & Dogs involve image bias
(color in the image). Similar to synthetic datasets, our method consistently outperforms
all baselines, including recent ones, by a significant margin. As presented in Table 3, our
model achieves a notable improvement in accuracy, gaining 12.58% at the 99.00% bias ratio
and 7.9% improvement at the 95.00% bias ratio. Moreover, the improvement is substantial
(around 35%) compared to a vanilla network that does not explicitly address biases. On the
BFFHQ dataset [16], where age is the intrinsic feature and gender is the bias, our model
demonstrates a significant performance boost compared to state-of-the-art methods and the
latest studies [1, 5, 18].

5.2 Q2 - Ablation study on orthogonality constraints
Both datasets, BFFHQ and Cats & Dogs, have distinct features. The significant performance
gain across both datasets emphasizes the effectiveness and robustness of our method across
diverse features, bias ratios, and scale of the dataset. Although counter-intuitive, our method
gives better gains over the vanilla network, on average, in more challenging test scenarios
with a severe bias ratio as compared to lesser severe bias scenarios. For instance, our method
achieves 45% gain over the vanilla network at 99% bias ratio as compared to 26% gain at
95% bias ratio on Cats & Dogs dataset, and similarly, a 27% gain at 99.5% bias ratio as
compared to 7% gain at 95% bias ratio on BFFHQ dataset.

Cats & Dogs Dataset
Bias Ratio(%) 99.00 95.00

Vanilla 48.06 69.88
HEX [35] 46.76 72.60
LNL [15] 50.90 73.96
EnD [31] 48.56 68.24

ReBias [3] 48.70 65.74
LFF [26] 71.72 84.32

DisEnt [20] 65.74 81.58
BiasEnsemble [21] 81.52 88.60

Ours 93.00 96.50
Table 3: Comparative accuracy performance (in
%) on bias conflicting samples of various debiasing
algorithms on the real-world Cat & Dog dataset.

BFFHQ Dataset
Bias Ratio(%) 99.50 99.00 98.00 95.00

Vanilla 55.64 60.96 69.00 82.88
HEX [35] 56.96 62.32 70.72 83.40
LNL [15] 56.88 62.64 69.80 83.08
EnD [31] 55.96 60.88 69.72 82.88

ReBias [3] 55.76 60.68 69.60 82.64
LFF [26] 65.19 69.24 73.08 79.80

DisEnt [20] 62.08 66.00 69.92 80.68
BiasEnsemble [21] 67.56 75.08 80.32 85.48

A2 [1] 77.83 78.98 81.13 86.22
AmpliBias [18] 78.82 81.80 82.20 87.34

Ours 83.20 82.20 88.40 90.20
Table 4: Comparative accuracy performance (in %) on bias
conflicting samples of various debiasing algorithms on the
BFFHQ dataset.

Our method posits that bias in models arises mainly due to spurious correlations between
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target labels and bias features, which themselves do not inherently cause misclassification but
rather contribute to dataset diversity and thus enhance model robustness and generalization.
To substantiate this perspective, we performed an ablation study analyzing the effects of
various constraints in the weight parameter space, using the CMNIST and Corrupted-CIFAR
datasets. Our setup involved two main approaches: initially, we aligned the debias network
Fd with the weights of the biased model Fb in the early layers; subsequently, we imposed
dissimilarity constraints in the later layers of Fd to further refine the debiasing process.

As indicated in Table 5, applying similarity constraints to preserve bias attributes leads
to significant performance gains in both datasets, especially noticeable when the bias sample
percentage is at 99%. This supports the notion that early neural layers are key in develop-
ing robust feature representations to mitigate biases in later stages. Furthermore, imposing
dissimilarity constraints on the later-stage layers of models Fb and Fd , specifically updating
model Fd , results in enhanced performance. This aligns with the hypothesis that addressing
biases in advanced stages of model training facilitates divergent learning trajectories from
the biased model. The introduction of orthogonality constraints assists the debias model in
basing decisions on intrinsic features rather than biases, contrasting with the biased model.

Method Dissim Sim CMNIST Corrupted CIFAR-101

99% 95% 99% 95%
Vanilla × × 42.26 72.77 28.22 46.89
Ours × ✓ 76.64 86.43 42.70 58.09
Ours ✓ × 77.89 87.81 43.40 60.05
Ours ✓ ✓ 78.03 88.64 43.94 60.06

Table 5: Ablation study on CMNIST and Corrupted CIFAR-101 dataset. CosFairNet with similar-
ity(Sim) is applied to the initial layer, while dissimilarity (Dissim) is applied to the later-stage layer. ✓
and × indicate “presence” and “absence” of a particular constraint, respectively.

5.3 Q3 - Effectiveness of the learned features

(a) Before debiasing (a) After debiasing

Figure 3: t-SNE feature visualization
comparing the vanilla model (without de-
biasing) and the proposed debias model on
right side. Red and Green points repre-
sent samples from two different classes of
the BFFHQ dataset. After debiasing with
the proposed model, noticeable enhance-
ments in class discrimination are observed,
resulting in better separation of classes and
hence, better classification accuracy. (Best
viewed in color).

To verify our model’s ability to learn class-
distinguishable features, we used t-SNE embed-
ding on the BFFHQ dataset, which has two tar-
get classes. Features from the penultimate layer
were visualized in 2D using t-SNE. Fig. 3 dis-
plays the differentiation between the features of
the vanilla model, which appear mixed, and those
of the proposed model, which are distinctly class-
separable. This visualization confirms the superior
performance of our model, attributable to its effec-
tive feature learning.

6 Discussion and Future Work
CosFairNet introduces a novel network realign-
ment method to reduce bias, especially when un-
biased samples are scarce. This approach builds
on the understanding that while low-level features
learned in early network layers are not harmful,
their spurious correlations with labels can be problematic. By employing an objective func-
tion within the parameter space, CosFairNet effectively uses the bias model to enrich these
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low-level features without creating unwanted correlations between features and labels. De-
spite its simplicity and efficacy, future work is needed.

Future directions include identifying which layers are most effective at learning various
feature levels, a task complicated by differences in model architecture. For example, com-
plex models may require several initial layers to learn low-level features effectively, whereas
simpler datasets might only need the first layer. Another challenge arises when using pre-
trained models where the weights are frozen, making it difficult to apply constraints in the
parameter space. One potential solution is to introduce additional trainable layers before
applying CosFairNet. Furthermore, while the method focuses on bias mitigation, it does not
specifically address scenarios with multiple biases for a single class, presenting an oppor-
tunity for further exploration and enhancement of the model in handling a broader range of
biases.

7 Conclusions
In this study, we introduce a novel bias mitigation method that addresses challenges encoun-
tered in prior approaches. Leveraging the insight that low-level features of biased samples
are valuable for learning, our method focuses on mitigating unintended correlations between
biased features and target labels. We utilize the bias model to enhance the learning of more
effective and diverse low-level features while employing orthogonality constraints at later-
stage layers. The proposed constraints in the parameter space ensure the preservation of
low-level features while simultaneously preventing spurious correlations with target labels.
Our approach is simple yet effective in mitigating bias and preventing its propagation through
subsequent layers, offering a potential solution to some of the limitations of existing meth-
ods. In summary, this paper has shown that bias can be effectively curtailed by judiciously
adjusting the model’s parameters. To tackle bias in machine learning models, our study
highlights a novel direction and emphasizes the significance of incorporating diverse feature
learning into the training process.

References
[1] Jaeju An, Taejune Kim, Donggeun Ko, Sangyup Lee, and Simon S Woo. Aˆ 2: Adap-

tive augmentation for effectively mitigating dataset bias. In Proceedings of the Asian
Conference on Computer Vision, pages 4077–4092, 2022.

[2] Devansh Arpit, Stanislaw Jastrzkebski, Nicolas Ballas, David Krueger, Emmanuel Ben-
gio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Ben-
gio, et al. A closer look at memorization in deep networks. In International conference
on machine learning, pages 233–242. PMLR, 2017.

[3] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh.
Learning de-biased representations with biased representations. In International Con-
ference on Machine Learning, pages 528–539. PMLR, 2020.

[4] Haoyue Bai, Rui Sun, Lanqing Hong, Fengwei Zhou, Nanyang Ye, Han-Jia Ye, S-
H Gary Chan, and Zhenguo Li. Decaug: Out-of-distribution generalization via decom-
posed feature representation and semantic augmentation. In AAAI, 2021.



RAJEEV R DWIVEDI, PRIYADARSHINI K, VINOD K KURMI: COSFAIRNET 11

[5] Carlo Alberto Barbano, Benoit Dufumier, Enzo Tartaglione, Marco Grangetto, and
Pietro Gori. Unbiased supervised contrastive learning. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=Ph5cJSfD2XN.

[6] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In
Proceedings of the European conference on computer vision (ECCV), pages 456–473,
2018.

[7] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox.
Discriminative unsupervised feature learning with convolutional neural networks. Ad-
vances in neural information processing systems, 27, 2014.

[8] Alban Flachot and Karl R Gegenfurtner. Processing of chromatic information in a deep
convolutional neural network. JOSA A, 35(4):B334–B346, 2018.

[9] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wich-
mann, and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increas-
ing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231,
2018.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[11] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to
common corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[12] Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy Bengio, and Emily Denton.
Characterising bias in compressed models. arXiv preprint arXiv:2010.03058, 2020.

[13] Myeongho Jeon, Daekyung Kim, Woochul Lee, Myungjoo Kang, and Joonseok Lee.
A conservative approach for unbiased learning on unknown biases. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16752–
16760, 2022.

[14] Vinod K Kurmi, Rishabh Sharma, Yash Vardhan Sharma, and Vinay P. Namboodiri.
Gradient based activations for accurate bias-free learning. In AAAI,, Feb 2022.

[15] Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim, and Junmo Kim. Learn-
ing not to learn: Training deep neural networks with biased data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9012–
9020, 2019.

[16] Eungyeup Kim, Jihyeon Lee, and Jaegul Choo. Biaswap: Removing dataset bias with
bias-tailored swapping augmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14992–15001, 2021.

[17] Nayeong Kim, Sehyun Hwang, Sungsoo Ahn, Jaesik Park, and Suha Kwak. Learning
debiased classifier with biased committee. arXiv preprint arXiv:2206.10843, 2022.

https://openreview.net/forum?id=Ph5cJSfD2XN
https://openreview.net/forum?id=Ph5cJSfD2XN


12 RAJEEV R DWIVEDI, PRIYADARSHINI K, VINOD K KURMI: COSFAIRNET

[18] Donggeun Ko, Dongjun Lee, Namjun Park, Kyoungrae Noh, Hyeonjin Park, and Jaek-
wang Kim. Amplibias: Mitigating dataset bias through bias amplification in few-shot
learning for generative models. In Proceedings of the 32nd ACM International Confer-
ence on Information and Knowledge Management, CIKM ’23, page 4028–4032, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701245.
doi: 10.1145/3583780.3615184. URL https://doi.org/10.1145/3583780.
3615184.

[19] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas,
Dinghuai Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generaliza-
tion via risk extrapolation (rex). In International Conference on Machine Learning,
pages 5815–5826. PMLR, 2021.

[20] Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, and Jaegul Choo. Learning
debiased representation via disentangled feature augmentation. Advances in Neural
Information Processing Systems, 34:25123–25133, 2021.

[21] Jungsoo Lee, Jeonghoon Park, Daeyoung Kim, Juyoung Lee, Edward Choi, and Jaegul
Choo. Revisiting the importance of amplifying bias for debiasing. AAAI-23, 5 2022.
URL http://arxiv.org/abs/2205.14594.

[22] Yi Li and Nuno Vasconcelos. Repair: Removing representation bias by dataset resam-
pling. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9572–9581, 2019.

[23] Zhiheng Li, Ivan Evtimov, Albert Gordo, Caner Hazirbas, Tal Hassner, Cristian Canton
Ferrer, Chenliang Xu, and Mark Ibrahim. A whac-a-mole dilemma: Shortcuts come
in multiples where mitigating one amplifies others. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 20071–20082, 2023.

[24] Sheng Liu, Xu Zhang, Nitesh Sekhar, Yue Wu, Prateek Singhal, and Carlos Fernandez-
Granda. Avoiding spurious correlations via logit correction. In The Eleventh
International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=5BaqCFVh5qL.

[25] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Gal-
styan. A survey on bias and fairness in machine learning. ACM computing surveys
(CSUR), 54(6):1–35, 2021.

[26] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning
from failure: De-biasing classifier from biased classifier. Advances in Neural Informa-
tion Processing Systems, 33:20673–20684, 2020.

[27] Geon Yeong Park, Sang Wan Lee, and Jong Chul Ye. Efficient debiasing with con-
trastive weight pruning, 2023. URL https://openreview.net/forum?id=
0DIkhwclYX3.

[28] Maan Qraitem, Kate Saenko, and Bryan A Plummer. Bias mimicking: A simple sam-
pling approach for bias mitigation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 20311–20320, 2023.

https://doi.org/10.1145/3583780.3615184
https://doi.org/10.1145/3583780.3615184
http://arxiv.org/abs/2205.14594
https://openreview.net/forum?id=5BaqCFVh5qL
https://openreview.net/forum?id=5BaqCFVh5qL
https://openreview.net/forum?id=0DIkhwclYX3
https://openreview.net/forum?id=0DIkhwclYX3


RAJEEV R DWIVEDI, PRIYADARSHINI K, VINOD K KURMI: COSFAIRNET 13

[29] Shiori Sagawa, PangWei Koh, Tatsunori B Hashimoto, and Percy Liang. Distribution-
ally robust neural networks for group shifts: On the importance of regularization for
worst-case generalization. arXiv preprint arXiv:1911.08731, 2019.

[30] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE international conference on
computer vision, pages 618–626, 2017.

[31] Enzo Tartaglione, Carlo Alberto Barbano, and Marco Grangetto. End: Entangling and
disentangling deep representations for bias correction. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 13508–13517, 2021.

[32] Damien Teney, Ehsan Abbasnejad, and Anton van den Hengel. Unshuffling data for
improved generalization. arXiv preprint arXiv:2002.11894, 2020.

[33] Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. In CVPR 2011,
pages 1521–1528, 2011. doi: 10.1109/CVPR.2011.5995347.

[34] Moritz Vandenhirtz, Laura Manduchi, Ričards Marcinkevičs, and Julia E Vogt.
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