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Abstract

In this supplementary material, we provide additional results on the Biased Action
Recognition (BAR) dataset and more details about the other datasets used. We include
results on the effect of the hyperparameter λc on model performance. Additionally, we
examine the performance of our model on bias-aligned and bias-conflicting samples sep-
arately. We explore the impact of layer selection on model performance and characterize
the effects of applying similarity versus dissimilarity. Furthermore, we provide Grad-
CAM visualizations comparing our model to the vanilla model. Finally, we include a
detailed algorithm of our model architecture.

1 Dataset Description
We assess our debiasing algorithm on four standard datasets. (1) The Colored MNIST
dataset is the modified version of the MNIST dataset [8] where each digit is deliberately
perturbed by a specific color to form a spurious correlation between bias attributes and tar-
get labels. Instead of creating our own version of the dataset, we use the Colored MNIST
dataset as proposed in [11] to ensure a fair and direct comparison. This is because the
dataset’s construction significantly varies due to the changing coloring protocol. (2) The
Corrupted CIFAR-101 [3] dataset introduces bias attributes through artificially generated
distortions, such as fog, adjustments in brightness, or variations in saturation, which are syn-
thetically applied to each class. (3) The BFFHQ dataset [5] is a gender-biased derivative of
the widely-used Flickr-Faces-HQ (FFHQ) dataset, where age serves as the target label and
gender is a correlated bias. (4) The Dogs & Cats dataset [4] is an (animal, color) dataset,
where the former and latter represent target and bias attributes, respectively. Each dataset
is predominantly composed of biased samples (up to 99.5%), with a minimal presence of
bias-conflicting samples. The distribution of bias samples ranges from 95% to 99.5%.

The dimensions of the images differ across the datasets: Colored MNIST has dimensions
of 28×28, Corrupted-CIFAR-101 has dimensions of 32x32, and the remaining datasets have
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dimensions of 224×224. All image data is normalized across each channel using a mean
of (0.4914, 0.4822, 0.4465) and a standard deviation of (0.2023, 0.1994, 0.2010). While
Colored MNIST does not undergo additional data augmentation, all other datasets benefit
from random crop and horizontal flip transformations

Evaluation Protocol: We follow the standard protocol for evaluation as used in the other
SOTA methods, where the train and validation sets are similar while the test set is inverted.
For example, in training (99% BA dataset and 1% BC) while in testing (99%BC and 1% BA)
Our idea is based on the notion of learning non-spurious and inherent features of objects by
imposing both dissimilarity constraints in the final layers and similarity in the initial layers.
However, for a comprehensive ablation study, we will also include results in below table
obtained using only similarity constraints.

1.1 BFFHQ
The BFFHQ dataset [5] is a gender-biased derivative of the widely-used Flickr-Faces-HQ
(FFHQ) dataset, with age as the target label and gender as a correlated bias. It predominantly
comprises the ’young’ category (individuals aged 10 to 29) which is strongly associated with
the ’female’ gender, while the ’old’ category (individuals aged 40 to 59) is linked with the
’male’ gender.

1.2 Dogs & Cats
The Dogs & Cats dataset, initially presented by [4] and subsequently restructured by [10]
for bias studies from the original training set, features images categorized into "bright dogs
and dark cats" versus "dark dogs and bright cats". Within this dataset, the proportion of
bias-aligned to bias-conflicting samples is determined as 8037 to 80, which corresponds to a
1% ratio, and 8037 to 452, equating to a 5% ratio. According to [12], neural networks show
a predilection for learning shapes over colors, provided the dataset is sufficiently robust. In
this context, the dataset stands out from the Colored MNIST dataset in that the shapes are
more pronounced, while the color of the animals is de-emphasized.

1.3 Colored MNIST
A modified version of MNIST dataset [8] where we pertubate them systematically with
colours that act as bias attributes. Each of the ten digits is intentionally correlated with a
particular color (e.g., red for digit 0). To materialize this bias, color is strategically injected
into the foreground of each image. Our experimentation with the Colored MNIST dataset,
following the methodology established in [10], involves a systematic consideration of differ-
ent ratios of bias-conflicting samples. For each ratio of interest, the dataset is divided into
two subsets: bias-aligned samples and bias-conflicting samples. The distribution of these
subsets varies depending on the specific ratio being examined. Here are the exact numbers
for each ratio:

• 0.5% ratio: 54751 bias-aligned samples, 249 bias-conflicting samples
• 1% ratio: 54509 bias-aligned samples, 491 bias-conflicting samples
• 2% ratio: 54014 bias-aligned samples, 986 bias-conflicting samples
• 5% ratio: 52551 bias-aligned samples, 2449 bias-conflicting samples.

This deliberate configuration allows us to comprehensively explore and analyze the impact
of bias and its conflicts on the performance of machine learning models in the context of
Colored MNIST.
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1.4 Corrupted CIFAR-101

The second dataset is the perturbed version of original [7]. We adopted the version used by
[3], where the data is perturbed with artificially generated distortions, such as fog, adjust-
ments in brightness, or variations in saturation, have been synthetically introduced to each
class. These carefully crafted synthetic biases aim to mimic real-world scenarios closely.

1.5 BAR
The Biased Action Recognition (BAR) dataset comprises six action classes, each biased
toward distinct environmental contexts. These classes were chosen by examining the imSitu
dataset(a dataset supporting situation recognition), which provides action and place labels
for still images from Google Image Search. The selected action classes share commonplace
characteristics while having distinct place attributes, resulting in six typical action-place
pairs: (Climbing, Rock Wall), (Diving, Underwater), (Fishing, Water Surface), (Racing, A
Paved Track), (Throwing, Playing Field), and (Vaulting, Sky).

2 Results on BAR dataset
In our experiments with the BAR dataset presented in Table 1, the anticipated performance
levels were not achieved. One plausible explanation for this outcome can be traced back to
the limited size of the dataset. Specifically, under the 99% bias ratio setting for class "0",
there are only two images that correspond to bias-conflicting samples, in stark contrast to
the 296 bias-aligned images. The constraints imposed by the diminutive dataset size neces-
sitated the use of pre-trained models. Consequently, our model faces significant limitations
in its learning capacity under such conditions, where bias-conflicting samples are extremely
scarce. Given all these limitations, our model still gives better performance than baseline
[11] as well as recent studies carried out by [1, 6, 10] on 99% bias ratio. However, when
evaluated on a 95% bias ratio, we outperform the baseline, although our model’s accuracy
falls short of the margin in accommodating new developments.

BAR Dataset [11]
Bias Ratio(%) 99.00 95.00

Vanilla 70.55 82.53
DisEnt [9] 70.33 83.13
LFF [11] 70.16 82.95

A2 [1] 71.15 83.07
ReBias [2] 73.01 83.51

Revisiting LFF [10] 73.36 84.96
AmpliBias [6] 73.30 84.67

Ours 74.52 83.48
Table 1: Comparative accuracy performance (in %) of of various debiasing algorithms on
the BAR Dataset.

3 Effect of hyperparameter λc

The hyper-parameters can have a profound impact on model performance and need to be
adjusted accordingly to get the intended performance. In our method, we adjust the strength
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of similarity or dissimilarity, with respect to where it is applied to the Fd model using λc. This
adjustment is necessary because of some intrinsic factors. Since we are making the layers of
bias Fd and debias Fd model dissimilar, it may not always be the case that they need to be
completely similar or completely dissimilar. The bias model can have useful information that
should be retained by the Fd model to perform well. In fact, to make enhanced predictions on
both bias-aligned images, the debias model should also have qualities of the bias model as
the debias model is already best in giving the highest performance on bias-aligned images.

For the Coloured MNIST dataset, we see that the highest performance is achieved when
λc is equal to 0.1. In the case of coloured MNIST, the bias is easy and is learned at early
layers; since it is easy it also impacts the Fd model easily. Hence, to debias we need to
have a strong λc to control the bias and make it dissimilar from Fb. On the other hand, in
BFFHQ Dataset, the dissimilarity strength is very low (between 10−5 to 10−8). The reason
can be attributed to the presence of similar high-level features in both Fd and Fb. Since, the
high-level abstractions are very similar for both the models, making them very dissimilar is
bound to distort the performance of the model. The same pattern can be seen in Cats & Dogs
Dataset where dissimilarity strength is 10−8 for a very severe 99% bias aligned dataset and
10−3 for 95% biased dataset.

CMNIST Dataset
λc 99.50 99.00 98.00 95.00

10−1 66.98 78.03 84.22 88.64
10−2 60.22 73.41 81.12 86.37
10−3 62.41 74.14 78.36 84.84
10−4 60.81 74.57 79.43 85.81
10−5 64.36 75.18 80.02 84.48
10−7 63.83 76.29 79.51 84.99
10−8 64.57 77.10 80.04 84.39

Table 2: Performance Impact of Varying Dissimilarity Strength λc on the Third Layer of a
3-Layer MLP Model on the CMNIST Dataset. The table presents accuracy (in %) across
different bias ratios in the dataset, illustrating the effect of λc on robustness against bias.

BFFHQ Dataset
λc 99.50 99.00 98.00 95.00

10−1 82.20 78.80 88.40 86.40
10−2 81.60 80.00 86.40 89.20
10−3 82.20 78.40 87.00 88.60
10−4 79.80 80.00 88.40 88.80
10−5 81.40 79.50 88.00 90.20
10−6 83.20 82.20 86.80 88.60
10−8 81.40 78.70 88.40 87.00

Table 3: Performance Impact of Varying Dissimilarity Strength λc on the second MLP layer
of pre-trained ResNet18 with three MLP layers on the BFFHQ dataset. The last MLP layer
corresponds to the classification layer. The table presents accuracy (in %) across different
bias ratios in the dataset, illustrating the effect of λc on model robustness against bias.
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Cats & Dogs Dataset
λc 99.00 95.00

10−1 90.40 95.00
10−2 89.90 95.60
10−3 89.80 96.50
10−4 89.20 94.10
10−5 90.70 94.10
10−6 92.20 94.80
10−8 93.00 95.00

Table 4: Performance with varying λc on the second MLP layer of pre-trained ResNet18
with three MLP layers on the Cats & Dogs dataset. The table presents accuracy (in %)
across different bias ratios in the dataset.
4 Effect on bias aligned and bias conflicting Samples
Our model -CosFairNet demonstrates superior performance on both unbiased and bias-conflicting
samples in comparison to the vanilla model. The latter tends to acquire biases, which are sim-
pler to assimilate than the true underlying signals, and thus, it predominantly relies on these
biases for classification. As depicted in Figure 1, the vanilla model exhibits near-perfect
accuracy in recognizing bias-aligned samples. However, it significantly underperforms in
accurately classifying bias-conflicting and overall unbiased samples, highlighting the effec-
tiveness of our approach in mitigating bias. Furthermore, it is important to note that classify-
ing bias-aligned samples is not as critical as identifying bias-conflicting samples. Therefore,
despite the vanilla model performing exceptionally well on bias-aligned samples, its practi-
cal value is limited.

99.8

42.26
48.26

75.9 78.03 77.82

0

25

50

75

100

BA BC Unbiased 

Vanilla Ours

Figure 1: Comparative Analysis of Model Performance on Bias-Aligned, Unbiased, and
Bias-Conflicting Samples. In this figure, ’BA’ denotes Bias-Aligned, and ’BC’ denotes Bias-
Conflicting samples. The unbiased dataset has images from both the BA and BC sets.

5 Effect of layer selection
Biases come in different magnitudes, with some being easy to address and others more chal-
lenging. Depending on the ease of bias within the dataset, they are learned at either the early
layers, mid-layers, or the final layers of the deep learning model. In Table 5, we present
an ablation study of applying similarity or dissimilarity at different layers of the model. We
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observe a few things - first, applying layer similarity at just one layer works very well and
yields optimal results, whereas applying it to multiple layers leads to a drastic degradation
in performance. For instance, applying similarity or dissimilarity to the second layer of a
three-layer dense network results in very high accuracy, surpassing the present state-of-the-
art. However, when applied to both the first and second layers, the performance drops to less
than half of the intended accuracy. Additionally, controlling bias at earlier layers seems to
be generally more effective compared to controlling bias at later layers of the model.

CMNIST
1 2 3 12 13 23 123

Similarity 74.3 75.13 73.83 30.05 41.24 69.85 26.76
Dissimilarity 65.11 78.03 76.31 28.45 30.57 72.54 27.94

Table 5: Performance Comparison of applying Similarity and Dissimilarity on Different
Layers of a 3-Layer MLP model on the CMNIST Dataset with 99% Bias Ratio. This table
represents the impact of applying similarity and dissimilarity metrics to the first (1), second
(2), and third (3) layers, as well as their combinations (12, 13, 23, 123), elucidating how
interventions in specific layers affect the overall model performance.

Figure 2 demonstrates our model’s performance improvement over time, especially when
employing both similarity and dissimilarity constraints, surpassing other models in effec-
tiveness and convergence. This highlights the importance of layer-specific orthogonality in
strengthening debiasing efforts.

Figure 2: Performance comparison of our method against baselines with increasing training
iteration. The results are shown on the CMNIST dataset that has a 99% bias ratio.“Both"
refers to our final model after the combined application of similarity and dissimilarity con-
straints. (Best view in colour).

6 Grad-CAM Visualization
In Figure 3, using Grad-CAM visualizations, we present a comparative analysis between our
proposed model- CosFairNet and the vanilla model in the context of the BFFHQ dataset [5].
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The GradCam visualizations elucidate the regions within the images that the models focus on
to infer age, which serves as the target label, amidst the gender-biased data. It is evident from
the ’Vanilla’ model columns that the attention is unevenly distributed across gender lines. On
the other hand, our model demonstrates a more uniform attention distribution, indicating a
generalized approach towards learning gender when determining age. This is particularly
noteworthy in images where the ’old’ category overlaps with ’female’ characteristics and the
’young’ with ’male’, showcasing our model’s improved capability to generalize beyond the
biased associations present in the dataset.

Vanilla Ours Vanilla Ours

Figure 3: Grad-CAM Visualization Comparing Vanilla and Our Model’s Attention on the
BFFHQ Dataset. The left column, ’Vanilla’, shows a concentration on gendered features
while ’Ours’ on the right demonstrates a more equitable distribution of attention, emphasiz-
ing our model’s resistance to gender bias.

7 Algorithm
The proposed algorithm 1, CosFairNet, aims to train a debiased model by leveraging co-
sine similarity to realign model parameters. The training process involves a biased model
Fb(x;θb) and a debiasing model Fd(x;θd), both initialized with their respective parameters.
For each mini-batch of labeled samples, predictions are generated from both models, fol-
lowed by the computation of cross-entropy loss for the debiasing model and generalized
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cross-entropy loss for the biased model. The biased model parameters are updated using
gradient descent. The difficulty score is then obtained to weight the loss for updating the de-
biasing model. Additionally, a dissimilarity loss is introduced, which uses cosine similarity
to ensure the initial layers of both models are aligned while the later layers diverge. This
alignment aims to reduce bias by penalizing similarity in later layers, thereby promoting di-
versity in learned features. The algorithm iteratively updates the debiased model parameters,
ultimately yielding a model with minimized bias and enhanced generalization.

Algorithm 1: CosFairNet: Parameters Realignment using Cosines
Input: Training data D = {(x1,y1), ...,(xN ,yN)}
Parameters θb and θd , learning rate η , cosine strength λc, Initialize biased Fb(x;θb)
and debiasing Fd(x;θd) model
Output: Trained debiased model F(; ˆ̂

θd)
1 for mini batch of labeled samples (xi,yi) ∈ D do
2 Prediction from bias model: ŷb

i ← Fb(xi,θb);
3 Prediction from debias model: ŷd

i ← Fd(xi,θd);
4 Losses: Ld ← CE(ŷd

i ;yi)

5 Lb ← GCE(ŷb
i ;yi)

6 Update the biased model:
7 θ̂b ← θb -η ∂Lb

∂θb

8 ObtainW(xi) from Eq. ??
9 Update the debiased model:

10 θ̂d ← θd -η ∂W(xi)·Ld
∂θd

11 Calculate the dis-similarity loss:
12 for kth layer parameters θ̂b(k) ∈ θ̂b and θ̂d(k) ∈ θ̂d do
13 if k is initial layer then
14 λcLcosSim(θ̂d(k), θ̂b(k)) from Eq. ??
15

ˆ̂
θd ← θ̂d -η ∂LcosSim

∂ θ̂d
;

16 else
17 Ldis ← λc

(
1−LcosSim(θ̂d(k), θ̂b(k))

)
18

ˆ̂
θd ← θ̂d -η ∂Ldis

∂ θ̂d
;

19 end
20 end
21 end

The code for the proposed model “CosFairNet” and additional details can be found on the
project page: https://visdomlab.github.io/CosFairNet/

https://visdomlab.github.io/CosFairNet/


RAJEEV R DWIVEDI, PRIYADARSHINI K, VINOD K KURMI: COSFAIRNET 9

References
[1] Jaeju An, Taejune Kim, Donggeun Ko, Sangyup Lee, and Simon S Woo. Aˆ 2: Adap-

tive augmentation for effectively mitigating dataset bias. In Proceedings of the Asian
Conference on Computer Vision, pages 4077–4092, 2022.

[2] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh.
Learning de-biased representations with biased representations. In International Con-
ference on Machine Learning, pages 528–539. PMLR, 2020.

[3] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to
common corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[4] Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim, and Junmo Kim. Learn-
ing not to learn: Training deep neural networks with biased data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9012–
9020, 2019.

[5] Eungyeup Kim, Jihyeon Lee, and Jaegul Choo. Biaswap: Removing dataset bias with
bias-tailored swapping augmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14992–15001, 2021.

[6] Donggeun Ko, Dongjun Lee, Namjun Park, Kyoungrae Noh, Hyeonjin Park, and Jaek-
wang Kim. Amplibias: Mitigating dataset bias through bias amplification in few-shot
learning for generative models. In Proceedings of the 32nd ACM International Confer-
ence on Information and Knowledge Management, CIKM ’23, page 4028–4032, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701245.
doi: 10.1145/3583780.3615184. URL https://doi.org/10.1145/3583780.
3615184.

[7] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[8] Yann LeCun, Corinna Cortes, Chris Burges, et al. Mnist handwritten digit database,
2010.

[9] Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, and Jaegul Choo. Learning
debiased representation via disentangled feature augmentation. Advances in Neural
Information Processing Systems, 34:25123–25133, 2021.

[10] Jungsoo Lee, Jeonghoon Park, Daeyoung Kim, Juyoung Lee, Edward Choi, and Jaegul
Choo. Revisiting the importance of amplifying bias for debiasing. AAAI-23, 5 2022.
URL http://arxiv.org/abs/2205.14594.

[11] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning
from failure: De-biasing classifier from biased classifier. Advances in Neural Informa-
tion Processing Systems, 33:20673–20684, 2020.

[12] Samuel Ritter, David GT Barrett, Adam Santoro, and Matt M Botvinick. Cognitive
psychology for deep neural networks: A shape bias case study. In International con-
ference on machine learning, pages 2940–2949. PMLR, 2017.

https://doi.org/10.1145/3583780.3615184
https://doi.org/10.1145/3583780.3615184
http://arxiv.org/abs/2205.14594

